Solved

The Unit Vector Resulted from Normalizing the Vector w=i+j+k\mathbf { w } = \mathbf { i } + \mathbf { j } + \mathbf { k }

Question 137

Multiple Choice

The unit vector resulted from normalizing the vector w=i+j+k\mathbf { w } = \mathbf { i } + \mathbf { j } + \mathbf { k } is


A) 13i+13j+13k\frac { 1 } { 3 } \mathbf { i } + \frac { 1 } { 3 } \mathbf { j } + \frac { 1 } { 3 } \mathbf { k }
B) 17i+17j+17k\frac { 1 } { \sqrt { 7 } } i + \frac { 1 } { \sqrt { 7 } } j + \frac { 1 } { \sqrt { 7 } } \mathbf { k }
C) 15i+15j+15k\frac { 1 } { \sqrt { 5 } } \mathbf { i } + \frac { 1 } { \sqrt { 5 } } \mathbf { j } + \frac { 1 } { \sqrt { 5 } } \mathbf { k }
D) 13i+13j+13k\frac { 1 } { \sqrt { 3 } } \mathbf { i } + \frac { 1 } { \sqrt { 3 } } \mathbf { j } + \frac { 1 } { \sqrt { 3 } } \mathbf { k }
E) 12i+12j+12k\frac { 1 } { \sqrt { 2 } } \mathbf { i } + \frac { 1 } { \sqrt { 2 } } \mathbf { j } + \frac { 1 } { \sqrt { 2 } } \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions