Multiple Choice
All philosophers respect each other. Some philosopher doesn't study some philosopher. Anything which respects something without studying it is open-minded, if ignorant. So something is open-minded and ignorant. (Ix: x is ignorant; Ox: x is open-minded; Px: x is a philosoper; Rxy: x respects y; Sxy: x studies y)
-Which of the following is the best translation into F of this argument?
A) 1. (∀x) (∀y) [(Px • Py) ⊃ (Rxx • Ryy) ] 2. (∃x) (∃y) [(Px • Py) • ~Sxy]
3) (∀x) (∀y) [(Rxy • ~Sxy) ⊃ (Ox Ix) ] / (∃x) (Ox • Ix)
B) 1. (∀x) (∀y) [(Px • Py) ⊃ (Rxy ≡ Ryx) ] 2. (∃x) (∃y) [(Px • Py) • ~Sxy]
3) (∀x) (∀y) [(Rxy • ~Sxy) ⊃ (Ox Ix) ] / (∃x) (Ox • Ix)
C) 1. (∀x) (∀y) [(Px • Py) ⊃ (Rxy • Ryx) ] 2. (∃x) (∃y) [(Px • Py) • ~Sxy]
3) (∀x) (∀y) [(Rxy • ~Sxy) ⊃ (Ox Ix) ] / (∃x) (Ox • Ix)
D) 1. (∀x) (∀y) [(Px • Py) ⊃ (Rxy • Ryx) ] 2. (∃x) [Px • (∃y) (Py • ∼Sxy) ]
3) (∀x) (∀y) [(Rxy • ∼Sxy) ⊃ (Ox • Ix) ] / (∃x) (Ox • Ix)
E) 1. (∀x) (∀y) [(Px • Py) ⊃ (Rxx • Ryy) ] 2. (∃x) (∃y) [(Px • Py) • ~Sxy]
3) (∀x) (∀y) [(Rxy • ~Sxy) ⊃ (Ox Ix) ] / (∃x) (Ox Ix)
Correct Answer:

Verified
Correct Answer:
Verified
Q14: construct a derivation of each logical truth
Q15: use:<br>b: Bhavin <br>c: Chloe <br>m: Megha<br>n: Nietzsche
Q16: determine whether the given argument is valid
Q17: select the best translation into predicate
Q18: 1. (∀x)(∀y)[(Px • Py) ⊃ Pf(x,y)]<br>2. (∃x)[Px
Q20: select the best translation into predicate logic,
Q21: (∃x)[Px • (∃y)(Qy • y=x)] ⊃
Q22: select the best translation into predicate
Q23: 1. (?x)(?y){Pf(x,y) ? [Pf(x,x) • Pf(y,y)]}<br>2. a=f(d,b)<br>3.
Q24: 1. (∀x)[Ex ⊃ (∀y)(Fy • Gxy)]<br>2. (∃x)(Ex