Multiple Choice
select the best translation into predicate logic, using the following translation key:
b: Britain
c: Charles
e: Elizabeth
t: Tescos
Px: x is a person
Qx: x is a Queen of England
Wx: x is a woman
Exy: x is more exalted than y
Ixy: x is in y
Pxy: x shops at y
Sxy: x is a son of y
-There is at most one queen in Britain.
A) Qe • ~(∃x) (Qx • x≠e)
B) ~(∃x) (∃y) (Qx • Ixb • Qy • Iyb)
C) (∀x) [(Qx • Ixb) ⊃ ~(∃y) (Qy • Iyb • y=x) ]
D) (∀x) (∀y) [(Qx • Qy) ⊃ (~Ixb ~Iyb) ]
E) (∀x) (∀y) [(Qx • Ixb • Qy • Iyb) ⊃ x=y]
Correct Answer:

Verified
Correct Answer:
Verified
Q12: 1. (∃x)[Dx • (∀y)(Ey ⊃ Fxy)]<br>2. (∀x)(Dx
Q13: 1. Fab • (∀x)(Fax ⊃ x=b)<br>2. ∼Fac<br>-Which
Q14: construct a derivation of each logical truth
Q15: use:<br>b: Bhavin <br>c: Chloe <br>m: Megha<br>n: Nietzsche
Q16: determine whether the given argument is valid
Q18: 1. (∀x)(∀y)[(Px • Py) ⊃ Pf(x,y)]<br>2. (∃x)[Px
Q19: All philosophers respect each other. Some
Q20: select the best translation into predicate logic,
Q21: (∃x)[Px • (∃y)(Qy • y=x)] ⊃
Q22: select the best translation into predicate