Solved

Use the Regression Output Below to Answer the Following Questions (X)=( X ) =

Question 46

Multiple Choice

Use the regression output below to answer the following questions.
Lingar Reperaidion Anthyis: Dep Var
(X) =( X ) = Weight X={AX = \{ A Ee, Gender, Heifht, MBA, YY ear }\}
 Coefficients b Std.  Error  Std.  Beta t-test  Statistic p-value  Two Tailed  Intercept 210.60320.56010.2430.0000 Age 0.6600.2790.1012.3630.0186 Gender 17.4492.4500.2677.1220.0000 Height 4.9990.2940.61316.9820.0000 MBA 3.1223.0630.0431.0190.3087 Year 0.1110.5070.0060.2180.8274\begin{array}{|c|c|c|c|c|c|}\hline \text { Coefficients } & \boldsymbol{b} & \begin{array}{c}\text { Std. } \\\text { Error }\end{array} & \begin{array}{c}\text { Std. } \\\text { Beta }\end{array} & \begin{array}{c}\boldsymbol{t} \text {-test } \\\text { Statistic }\end{array} & \begin{array}{c}\boldsymbol{p} \text {-value } \\\text { Two Tailed }\end{array} \\\hline \text { Intercept } & -210.603 & 20.560 & & -10.243 & 0.0000 \\\hline \text { Age } & 0.660 & 0.279 & 0.101 & 2.363 & 0.0186 \\\hline \text { Gender } & 17.449 & 2.450 & 0.267 & 7.122 & 0.0000 \\\hline \text { Height } & 4.999 & 0.294 & 0.613 & 16.982 & 0.0000 \\\hline \text { MBA } & -3.122 & 3.063 & -0.043 & -1.019 & 0.3087 \\\hline \text { Year } & -0.111 & 0.507 & -0.006 & -0.218 & 0.8274 \\\hline\end{array}

rr2 Adj. r2 SE(Reg)  n0.8340.6960.69317.879448\begin{array}{|c|c|c|c|c|}\hline \boldsymbol{r} & \boldsymbol{r}^{2} & \text { Adj. } \boldsymbol{r}^{2} & \text { SE(Reg) } & \boldsymbol{n} \\\hline 0.834 & 0.696 & 0.693 & 17.879 & 448 \\\hline\end{array}

 Source of  Variation  Sum of  Squares  df  Mean  Squares F-test  Statistic p-value  One Tailed  Regression 323592.24564718.4202.4710.0000 Error 141282.23442319.643 Total 464874.47447\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Source of } \\\text { Variation }\end{array} & \begin{array}{c}\text { Sum of } \\\text { Squares }\end{array} & \text { df } & \begin{array}{c}\text { Mean } \\\text { Squares }\end{array} & \begin{array}{c}F \text {-test } \\\text { Statistic }\end{array} & \begin{array}{c}\boldsymbol{p} \text {-value } \\\text { One Tailed }\end{array} \\\hline \text { Regression } & 323592.24 & 5 & 64718.4 & 202.471 & 0.0000 \\\hline \text { Error } & 141282.23 & 442 & 319.643 & & \\\hline \text { Total } & 464874.47 & 447 & & & \\\hline\end{array}

-In using Poisson regression,the researcher also must know


A) both the observed count and the number of opportunities
B) the relative percentages of each outcome
C) the distribution of the population
D) both the variance and the population mean

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions