Services
Discover
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Business
Study Set
Modern Marketing
Exam 9: Multiple Regression: Modeling Multivariate Relationships
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 41
True/False
Of the two main methods underlying nearly all of mathematical reasoning,statistics (particularly regression)is used when dealing with quantities that are certain.
Question 42
True/False
If the dependent variable is nominal data,then you would use Poisson regression for the regression analysis
Question 43
Multiple Choice
_______________ occurs when the error is not normally distributed.
Question 44
Multiple Choice
-Which independent variable is,taken by itself,the best predictor of Gender?
Question 45
Multiple Choice
When using rank-ordered data,the regression model that will be used is the
Question 46
Multiple Choice
Use the regression output below to answer the following questions. Lingar Reperaidion Anthyis: Dep Var
(
X
)
=
( X ) =
(
X
)
=
Weight
X
=
{
A
X = \{ A
X
=
{
A
Ee, Gender, Heifht, MBA,
Y
Y
Y
ear
}
\}
}
 CoefficientsÂ
b
 Std.Â
 ErrorÂ
 Std.Â
 BetaÂ
t
-testÂ
 StatisticÂ
p
-valueÂ
 Two TailedÂ
 InterceptÂ
−
210.603
20.560
−
10.243
0.0000
 AgeÂ
0.660
0.279
0.101
2.363
0.0186
 GenderÂ
17.449
2.450
0.267
7.122
0.0000
 HeightÂ
4.999
0.294
0.613
16.982
0.0000
 MBAÂ
−
3.122
3.063
−
0.043
−
1.019
0.3087
 YearÂ
−
0.111
0.507
−
0.006
−
0.218
0.8274
\begin{array}{|c|c|c|c|c|c|}\hline \text { Coefficients } & \boldsymbol{b} & \begin{array}{c}\text { Std. } \\\text { Error }\end{array} & \begin{array}{c}\text { Std. } \\\text { Beta }\end{array} & \begin{array}{c}\boldsymbol{t} \text {-test } \\\text { Statistic }\end{array} & \begin{array}{c}\boldsymbol{p} \text {-value } \\\text { Two Tailed }\end{array} \\\hline \text { Intercept } & -210.603 & 20.560 & & -10.243 & 0.0000 \\\hline \text { Age } & 0.660 & 0.279 & 0.101 & 2.363 & 0.0186 \\\hline \text { Gender } & 17.449 & 2.450 & 0.267 & 7.122 & 0.0000 \\\hline \text { Height } & 4.999 & 0.294 & 0.613 & 16.982 & 0.0000 \\\hline \text { MBA } & -3.122 & 3.063 & -0.043 & -1.019 & 0.3087 \\\hline \text { Year } & -0.111 & 0.507 & -0.006 & -0.218 & 0.8274 \\\hline\end{array}
 CoefficientsÂ
 InterceptÂ
 AgeÂ
 GenderÂ
 HeightÂ
 MBAÂ
 YearÂ
​
b
−
210.603
0.660
17.449
4.999
−
3.122
−
0.111
​
 Std.Â
 ErrorÂ
​
20.560
0.279
2.450
0.294
3.063
0.507
​
 Std.Â
 BetaÂ
​
0.101
0.267
0.613
−
0.043
−
0.006
​
t
-testÂ
 StatisticÂ
​
−
10.243
2.363
7.122
16.982
−
1.019
−
0.218
​
p
-valueÂ
 Two TailedÂ
​
0.0000
0.0186
0.0000
0.0000
0.3087
0.8274
​
​
r
r
2
 Adj.Â
r
2
 SE(Reg) Â
n
0.834
0.696
0.693
17.879
448
\begin{array}{|c|c|c|c|c|}\hline \boldsymbol{r} & \boldsymbol{r}^{2} & \text { Adj. } \boldsymbol{r}^{2} & \text { SE(Reg) } & \boldsymbol{n} \\\hline 0.834 & 0.696 & 0.693 & 17.879 & 448 \\\hline\end{array}
r
0.834
​
r
2
0.696
​
 Adj.Â
r
2
0.693
​
 SE(Reg) Â
17.879
​
n
448
​
​
 Source ofÂ
 VariationÂ
 Sum ofÂ
 SquaresÂ
 dfÂ
 MeanÂ
 SquaresÂ
F
-testÂ
 StatisticÂ
p
-valueÂ
 One TailedÂ
 RegressionÂ
323592.24
5
64718.4
202.471
0.0000
 ErrorÂ
141282.23
442
319.643
 TotalÂ
464874.47
447
\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Source of } \\\text { Variation }\end{array} & \begin{array}{c}\text { Sum of } \\\text { Squares }\end{array} & \text { df } & \begin{array}{c}\text { Mean } \\\text { Squares }\end{array} & \begin{array}{c}F \text {-test } \\\text { Statistic }\end{array} & \begin{array}{c}\boldsymbol{p} \text {-value } \\\text { One Tailed }\end{array} \\\hline \text { Regression } & 323592.24 & 5 & 64718.4 & 202.471 & 0.0000 \\\hline \text { Error } & 141282.23 & 442 & 319.643 & & \\\hline \text { Total } & 464874.47 & 447 & & & \\\hline\end{array}
 Source ofÂ
 VariationÂ
​
 RegressionÂ
 ErrorÂ
 TotalÂ
​
 Sum ofÂ
 SquaresÂ
​
323592.24
141282.23
464874.47
​
 dfÂ
5
442
447
​
 MeanÂ
 SquaresÂ
​
64718.4
319.643
​
F
-testÂ
 StatisticÂ
​
202.471
​
p
-valueÂ
 One TailedÂ
​
0.0000
​
​
-In using Poisson regression,the researcher also must know
Question 47
Multiple Choice
Use the regression output below to answer the following questions. Lingar Reperaidion Anthyis: Dep Var
(
X
)
=
( X ) =
(
X
)
=
Weight
X
=
{
A
X = \{ A
X
=
{
A
Ee, Gender, Heifht, MBA,
Y
Y
Y
ear
}
\}
}
 CoefficientsÂ
b
 Std.Â
 ErrorÂ
 Std.Â
 BetaÂ
t
-testÂ
 StatisticÂ
p
-valueÂ
 Two TailedÂ
 InterceptÂ
−
210.603
20.560
−
10.243
0.0000
 AgeÂ
0.660
0.279
0.101
2.363
0.0186
 GenderÂ
17.449
2.450
0.267
7.122
0.0000
 HeightÂ
4.999
0.294
0.613
16.982
0.0000
 MBAÂ
−
3.122
3.063
−
0.043
−
1.019
0.3087
 YearÂ
−
0.111
0.507
−
0.006
−
0.218
0.8274
\begin{array}{|c|c|c|c|c|c|}\hline \text { Coefficients } & \boldsymbol{b} & \begin{array}{c}\text { Std. } \\\text { Error }\end{array} & \begin{array}{c}\text { Std. } \\\text { Beta }\end{array} & \begin{array}{c}\boldsymbol{t} \text {-test } \\\text { Statistic }\end{array} & \begin{array}{c}\boldsymbol{p} \text {-value } \\\text { Two Tailed }\end{array} \\\hline \text { Intercept } & -210.603 & 20.560 & & -10.243 & 0.0000 \\\hline \text { Age } & 0.660 & 0.279 & 0.101 & 2.363 & 0.0186 \\\hline \text { Gender } & 17.449 & 2.450 & 0.267 & 7.122 & 0.0000 \\\hline \text { Height } & 4.999 & 0.294 & 0.613 & 16.982 & 0.0000 \\\hline \text { MBA } & -3.122 & 3.063 & -0.043 & -1.019 & 0.3087 \\\hline \text { Year } & -0.111 & 0.507 & -0.006 & -0.218 & 0.8274 \\\hline\end{array}
 CoefficientsÂ
 InterceptÂ
 AgeÂ
 GenderÂ
 HeightÂ
 MBAÂ
 YearÂ
​
b
−
210.603
0.660
17.449
4.999
−
3.122
−
0.111
​
 Std.Â
 ErrorÂ
​
20.560
0.279
2.450
0.294
3.063
0.507
​
 Std.Â
 BetaÂ
​
0.101
0.267
0.613
−
0.043
−
0.006
​
t
-testÂ
 StatisticÂ
​
−
10.243
2.363
7.122
16.982
−
1.019
−
0.218
​
p
-valueÂ
 Two TailedÂ
​
0.0000
0.0186
0.0000
0.0000
0.3087
0.8274
​
​
r
r
2
 Adj.Â
r
2
 SE(Reg) Â
n
0.834
0.696
0.693
17.879
448
\begin{array}{|c|c|c|c|c|}\hline \boldsymbol{r} & \boldsymbol{r}^{2} & \text { Adj. } \boldsymbol{r}^{2} & \text { SE(Reg) } & \boldsymbol{n} \\\hline 0.834 & 0.696 & 0.693 & 17.879 & 448 \\\hline\end{array}
r
0.834
​
r
2
0.696
​
 Adj.Â
r
2
0.693
​
 SE(Reg) Â
17.879
​
n
448
​
​
 Source ofÂ
 VariationÂ
 Sum ofÂ
 SquaresÂ
 dfÂ
 MeanÂ
 SquaresÂ
F
-testÂ
 StatisticÂ
p
-valueÂ
 One TailedÂ
 RegressionÂ
323592.24
5
64718.4
202.471
0.0000
 ErrorÂ
141282.23
442
319.643
 TotalÂ
464874.47
447
\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Source of } \\\text { Variation }\end{array} & \begin{array}{c}\text { Sum of } \\\text { Squares }\end{array} & \text { df } & \begin{array}{c}\text { Mean } \\\text { Squares }\end{array} & \begin{array}{c}F \text {-test } \\\text { Statistic }\end{array} & \begin{array}{c}\boldsymbol{p} \text {-value } \\\text { One Tailed }\end{array} \\\hline \text { Regression } & 323592.24 & 5 & 64718.4 & 202.471 & 0.0000 \\\hline \text { Error } & 141282.23 & 442 & 319.643 & & \\\hline \text { Total } & 464874.47 & 447 & & & \\\hline\end{array}
 Source ofÂ
 VariationÂ
​
 RegressionÂ
 ErrorÂ
 TotalÂ
​
 Sum ofÂ
 SquaresÂ
​
323592.24
141282.23
464874.47
​
 dfÂ
5
442
447
​
 MeanÂ
 SquaresÂ
​
64718.4
319.643
​
F
-testÂ
 StatisticÂ
​
202.471
​
p
-valueÂ
 One TailedÂ
​
0.0000
​
​
-According to the regression output above,if Age is increased by one year,what will the impact be on Weight?
Question 48
True/False
Although regression can verify a relationship between variables,it cannot quantify the nature of that relationship.
Question 49
True/False
One limitation to regression is that,due to latent variables,it is hard to know what variable should predict what.
Question 50
Multiple Choice
All of the following are limitations of regression
except
Question 51
Multiple Choice
The test for autocorrelation is the
Question 52
True/False
For multiple linear regression,researchers want to examine the r
2
instead of the adjusted r
2
because the r
2
is not as easily fooled by additional independent variables.