Solved

Find the Divergence Of F(x,y)=sin(xy),cos(y2)\vec { F } ( x , y ) = \left\langle \sin ( x y ) , \cos \left( y ^ { 2 } \right) \right\rangle

Question 13

Multiple Choice

Find the divergence of F(x,y) =sin(xy) ,cos(y2) \vec { F } ( x , y ) = \left\langle \sin ( x y ) , \cos \left( y ^ { 2 } \right) \right\rangle


A) ycos(xy) 2ysin(y2) y \cos ( x y ) - 2 y \sin \left( y ^ { 2 } \right)
B) cos(xy) 2sin(y2) \cos ( x y ) - 2 \sin \left( y ^ { 2 } \right)
C) ycos(xy) +2ysin(y2) - y \cos ( x y ) + 2 y \sin \left( y ^ { 2 } \right)
D) ycos(xy) ysin(y2) y \cos ( x y ) - y \sin \left( y ^ { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions