Discover
Question 2
Find the derivative dr⃗ds\frac { d \vec { r } } { d s }dsdr r⃗(t) =⟨t,t3,t⟩,t=(s2+1) 3\vec { r } ( t ) = \left\langle t , t ^ { 3 } , \sqrt { t } \right\rangle , t = \left( s ^ { 2 } + 1 \right) ^ { 3 }r(t) =⟨t,t3,t⟩,t=(s2+1) 3
A) r⃗′(s) =⟨1,3(s2+1) 6,12(s2+1) −32⟩\vec { r } ^ { \prime } ( s ) = \left\langle 1,3 \left( s ^ { 2 } + 1 \right) ^ { 6 } , \frac { 1 } { 2 } \left( s ^ { 2 } + 1 \right) ^ { - \frac { 3 } { 2 } } \right\rangler′(s) =⟨1,3(s2+1) 6,21(s2+1) −23⟩ B) r⃗′(s) =⟨1,3t2,12t−12⟩\vec { r } ^ { \prime } ( s ) = \left\langle 1,3 t ^ { 2 } , \frac { 1 } { 2 } t ^ { - \frac { 1 } { 2 } } \right\rangler′(s) =⟨1,3t2,21t−21⟩ C) r⃗′(s) =⟨1,3(s2+1) 6,12(s2+1) −32>6s(s2+1) 2\vec { r } ^ { \prime } ( s ) = \left\langle 1,3 \left( s ^ { 2 } + 1 \right) ^ { 6 } , \frac { 1 } { 2 } \left( s ^ { 2 } + 1 \right) ^ { - \frac { 3 } { 2 } } > 6 s \left( s ^ { 2 } + 1 \right) ^ { 2 } \right.r′(s) =⟨1,3(s2+1) 6,21(s2+1) −23>6s(s2+1) 2 D) r⃗′(s) =⟨t,t3,t⟩6s(s2+1) \vec { r } ^ { \prime } ( s ) = \left\langle t , t ^ { 3 } , \sqrt { t } \right\rangle 6 s \left( s ^ { 2 } + 1 \right) r′(s) =⟨t,t3,t⟩6s(s2+1)
Correct Answer:
Verified
Q1: Evaluate the limit: <span class="ql-formula"
Q3: Evaluate and simplify the quantity.
Q4: Find the curvature of the vector
Q5: Find the arc length of the
Q6: For <span class="ql-formula" data-value="\vec {
Q7: Find the derivative <span class="ql-formula"
Q8: Find the distance traveled by a
Q9: Find the osculating plane for
Q10: Given the velocity vector <span
Q11: Evaluate the integral. <span class="ql-formula"