Solved

Find compuv\operatorname { com } p _ { \vec { u } } \vec { v }

Question 8

Multiple Choice

Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=1,1 and v=2,1\vec { u } = \langle 1,1 \rangle \text { and } \vec { v } = \langle - 2,1 \rangle


A) compuv=12c o m p _ { \vec { u } } \vec { v } = - \frac { 1 } { \sqrt { 2 } } projuv=12,12\operatorname { proj } _ { \vec { u } } \vec { v } = \left\langle - \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right\rangle orthogonal component is 32,32\left\langle - \frac { 3 } { 2 } , \frac { 3 } { 2 } \right\rangle
B) compuv=12c o m p _ { \vec { u } } \vec { v } = - \frac { 1 } { \sqrt { 2 } } projuv=14,14\operatorname { proj } _ { \vec { u } } \vec { v } = \left\langle - \frac { 1 } { 4 } , - \frac { 1 } { 4 } \right\rangle orthogonal component is 32,34\left\langle - \frac { 3 } { 2 } , \frac { 3 } { 4 } \right\rangle
C) compuv=13\operatorname { comp }_{ \overrightarrow { \vec { u }} } \vec { v } = - \frac { 1 } { \sqrt { 3 } } projuv=12,12\operatorname { proj } _ { \vec { u } } \vec { v } = \left\langle - \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right\rangle orthogonal component is 34,32\left\langle - \frac { 3 } { 4 } , \frac { 3 } { 2 } \right\rangle
D) compuv=13\operatorname { comp }_{ \overrightarrow { \vec { u } }} \vec { v } = - \frac { 1 } { \sqrt { 3 } } projuv=12,12\operatorname { proj } _ { \vec { u } } \vec { v } = \left\langle - \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right\rangle orthogonal component is 34,32\left\langle - \frac { 3 } { 4 } , \frac { 3 } { 2 } \right\rangle

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions