Solved

Find an Equation of Y as a Function of X x=t+1,y=et,t(,)x = t + 1 , \quad y = e ^ { t } , \quad t \in ( - \infty , \infty )

Question 56

Multiple Choice

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=t+1,y=et,t(,) x = t + 1 , \quad y = e ^ { t } , \quad t \in ( - \infty , \infty )


A) y=ex+1,x(,) , left to right y = e ^ { x + 1 } , x \in ( - \infty , \infty ) \text {, left to right }
B) y=ex1,x(,) , left to right y = e ^ { x - 1 } , x \in ( - \infty , \infty ) \text {, left to right }
C) y=ex+1,x(,) , right to left y = e ^ { x + 1 } , x \in ( - \infty , \infty ) \text {, right to left }
D) y=ex1,x(,) , right to left y = e ^ { x - 1 } , x \in ( - \infty , \infty ) \text {, right to left }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions