Solved

Find an Equation of Y as a Function of X x=sint,y=cos2t,t[π2,π2]x = \sin t , \quad y = \cos 2 t , \quad t \in \left[ - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right]

Question 61

Multiple Choice

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=sint,y=cos2t,t[π2,π2]x = \sin t , \quad y = \cos 2 t , \quad t \in \left[ - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right]


A) y=1+2x2,1x1, left to right y = 1 + 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { left to right }
B) y=12x2,1x1, left to right y = 1 - 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { left to right }
C) y=1+2x2,1x1, right to left y = 1 + 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { right to left }
D) y=12x2,1x1, right to left y = 1 - 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { right to left }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions