Solved

Find an Equation of Y as a Function of X x=2sint,y=2cost,t[0,2π]x = 2 \sin t , \quad y = 2 \cos t , \quad t \in [ 0,2 \pi ]

Question 21

Multiple Choice

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=2sint,y=2cost,t[0,2π]x = 2 \sin t , \quad y = 2 \cos t , \quad t \in [ 0,2 \pi ]


A) x2+y2=2, clockwise x ^ { 2 } + y ^ { 2 } = 2 , \quad \text { clockwise }
B) x2+y2=2, counterclockwise x ^ { 2 } + y ^ { 2 } = 2 , \quad \text { counterclockwise }
C) x2+y2=4, clockwise x ^ { 2 } + y ^ { 2 } = 4 , \quad \text { clockwise }
D) x2+y2=4, counterclockwise x ^ { 2 } + y ^ { 2 } = 4 , \quad \text { counterclockwise }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions