Solved

Find an Equation of Y as a Function of X x=cost,y=cos2t,t[0,π]x = \cos t , \quad y = \cos 2 t , \quad t \in [ 0 , \pi ]

Question 23

Multiple Choice

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=cost,y=cos2t,t[0,π]x = \cos t , \quad y = \cos 2 t , \quad t \in [ 0 , \pi ]


A) y=2x2+1,1x1, left to right y = 2 x ^ { 2 } + 1 , \quad - 1 \leq x \leq 1 , \quad \text { left to right }
B) y=1+2x2,1x1, right to left y = 1 + 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 \text {, right to left }
C) y=12x2,1x1, right to left y = 1 - 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { right to left }
D) y=2x21,1x1, right to left y = 2 x ^ { 2 } - 1 , \quad - 1 \leq x \leq 1 , \quad \text { right to left }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions