Solved

Find the Derivative Of f(x)=cos2(tan1x)f ( x ) = \cos ^ { 2 } \left( \tan ^ { - 1 } x \right)

Question 58

Multiple Choice

Find the derivative of f(x) =cos2(tan1x) f ( x ) = \cos ^ { 2 } \left( \tan ^ { - 1 } x \right)


A) cos2(tan1x) 1+x2\frac { \cos 2 \left( \tan ^ { - 1 } x \right) } { 1 + x ^ { 2 } }
B) 2cos(tan1x) 1+x2\frac { 2 \cos \left( \tan ^ { - 1 } x \right) } { 1 + x ^ { 2 } }
C) sin2(tan1x) 1+x2\frac { - \sin 2 \left( \tan ^ { - 1 } x \right) } { 1 + x ^ { 2 } }
D) 2sin(tan1x) 1+x2\frac { 2 \sin \left( \tan ^ { - 1 } x \right) } { 1 + x ^ { 2 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions