Solved

Find the Derivative Of f(x)=(sin3x)2xf ( x ) = ( \sin 3 x ) ^ { 2 x }

Question 52

Multiple Choice

Find the derivative of f(x) =(sin3x) 2xf ( x ) = ( \sin 3 x ) ^ { 2 x }


A) f(x) =(sin3x) 2x(2ln(sin3x) +3xcot3x) f ^ { \prime } ( x ) = ( \sin 3 x ) ^ { 2 x } ( 2 \ln ( \sin 3 x ) + 3 x \cot 3 x )
B) f(x) =(sin3x) 2x(2ln(sin3x) +3xtan3x) f ^ { \prime } ( x ) = ( \sin 3 x ) ^ { 2 x } ( 2 \ln ( \sin 3 x ) + 3 x \tan 3 x )
C) f(x) =(sin3x) 2x(2ln(sin3x) +6xcot3x) f ^ { \prime } ( x ) = ( \sin 3 x ) ^ { 2 x } ( 2 \ln ( \sin 3 x ) + 6 x \cot 3 x )
D) f(x) =(sin3x) 2x(2ln(sin3x) +6x) f ^ { \prime } ( x ) = ( \sin 3 x ) ^ { 2 x } ( 2 \ln ( \sin 3 x ) + 6 x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions