Solved

Let G(x) Be a Differential 0-Form on a Domain D \bigtriangledown

Question 49

Multiple Choice

Let g(x) be a differential 0-form on a domain D in  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  . If dg(x) =  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  (x) dx+  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  (x) dy +  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  (x) dz, then the vector field  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  (x) i +  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  (x) j +  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  (x) k is equal to


A) grad (g(x) )
B) div(g(x) )
C) curl ( \bigtriangledown g(x) )
D) \bigtriangledown × \bigtriangledown (g(x) )
E) \bigtriangledown (g(x) )  Let g(x)  be a differential 0-form on a domain D in   . If dg(x)  =   (x)  dx+   (x)  dy +   (x)  dz, then the vector field   (x)  i +   (x)  j +   (x)  k is equal to A)  grad (g(x) )  B)  div(g(x) )  C)  curl ( \bigtriangledown g(x) )  D)   \bigtriangledown  × \bigtriangledown (g(x) )  E)   \bigtriangledown (g(x) )  g(x)  g(x)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions