Solved

Verify That the Vector Field F =

Question 12

Multiple Choice

Verify that the vector field F = (2x y2z2 - sin(x) sin(y) ) i + (2 x2y z2+ cos(x) cos(y) ) j + (2x2y2 z + ) k is conservative and find a scalar potential f(x, y, z) for it that satisfies f(0, 0, 0) = 1.


A) Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x) sin(y) )  i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x) cos(y) )  j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  )  k  is conservative and find a scalar potential  f(x, y, z)   for it that satisfies  f(0, 0, 0)  = 1.    A)    B)  f(x, y, z)  =       + cos(x) sin(y)  +   + 1 C)  f(x, y, z)  =       + sin(x) cos(y)  +   + 1 D)  f(x, y, z)  =       + cos(x) sin(y)  +   E)  f(x, y, z)  = xyz + cos(x) sin(y)  +
B) f(x, y, z) = Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x) sin(y) )  i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x) cos(y) )  j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  )  k  is conservative and find a scalar potential  f(x, y, z)   for it that satisfies  f(0, 0, 0)  = 1.    A)    B)  f(x, y, z)  =       + cos(x) sin(y)  +   + 1 C)  f(x, y, z)  =       + sin(x) cos(y)  +   + 1 D)  f(x, y, z)  =       + cos(x) sin(y)  +   E)  f(x, y, z)  = xyz + cos(x) sin(y)  +  Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x) sin(y) )  i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x) cos(y) )  j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  )  k  is conservative and find a scalar potential  f(x, y, z)   for it that satisfies  f(0, 0, 0)  = 1.    A)    B)  f(x, y, z)  =       + cos(x) sin(y)  +   + 1 C)  f(x, y, z)  =       + sin(x) cos(y)  +   + 1 D)  f(x, y, z)  =       + cos(x) sin(y)  +   E)  f(x, y, z)  = xyz + cos(x) sin(y)  +  Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x) sin(y) )  i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x) cos(y) )  j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  )  k  is conservative and find a scalar potential  f(x, y, z)   for it that satisfies  f(0, 0, 0)  = 1.    A)    B)  f(x, y, z)  =       + cos(x) sin(y)  +   + 1 C)  f(x, y, z)  =       + sin(x) cos(y)  +   + 1 D)  f(x, y, z)  =       + cos(x) sin(y)  +   E)  f(x, y, z)  = xyz + cos(x) sin(y)  +  + cos(x) sin(y) + Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x) sin(y) )  i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x) cos(y) )  j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  )  k  is conservative and find a scalar potential  f(x, y, z)   for it that satisfies  f(0, 0, 0)  = 1.    A)    B)  f(x, y, z)  =       + cos(x) sin(y)  +   + 1 C)  f(x, y, z)  =       + sin(x) cos(y)  +   + 1 D)  f(x, y, z)  =       + cos(x) sin(y)  +   E)  f(x, y, z)  = xyz + cos(x) sin(y)  +  + 1
C) f(x, y, z) = Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x) sin(y) )  i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x) cos(y) )  j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  )  k  is conservative and find a scalar potential  f(x, y, z)   for it that satisfies  f(0, 0, 0)  = 1.    A)    B)  f(x, y, z)  =       + cos(x) sin(y)  +   + 1 C)  f(x, y, z)  =       + sin(x) cos(y)  +   + 1 D)  f(x, y, z)  =       + cos(x) sin(y)  +   E)  f(x, y, z)  = xyz + cos(x) sin(y)  +  Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x) sin(y) )  i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x) cos(y) )  j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  )  k  is conservative and find a scalar potential  f(x, y, z)   for it that satisfies  f(0, 0, 0)  = 1.    A)    B)  f(x, y, z)  =       + cos(x) sin(y)  +   + 1 C)  f(x, y, z)  =       + sin(x) cos(y)  +   + 1 D)  f(x, y, z)  =       + cos(x) sin(y)  +   E)  f(x, y, z)  = xyz + cos(x) sin(y)  +  Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x) sin(y) )  i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x) cos(y) )  j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  )  k  is conservative and find a scalar potential  f(x, y, z)   for it that satisfies  f(0, 0, 0)  = 1.    A)    B)  f(x, y, z)  =       + cos(x) sin(y)  +   + 1 C)  f(x, y, z)  =       + sin(x) cos(y)  +   + 1 D)  f(x, y, z)  =       + cos(x) sin(y)  +   E)  f(x, y, z)  = xyz + cos(x) sin(y)  +  + sin(x) cos(y) + Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x) sin(y) )  i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x) cos(y) )  j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  )  k  is conservative and find a scalar potential  f(x, y, z)   for it that satisfies  f(0, 0, 0)  = 1.    A)    B)  f(x, y, z)  =       + cos(x) sin(y)  +   + 1 C)  f(x, y, z)  =       + sin(x) cos(y)  +   + 1 D)  f(x, y, z)  =       + cos(x) sin(y)  +   E)  f(x, y, z)  = xyz + cos(x) sin(y)  +  + 1
D) f(x, y, z) = Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x) sin(y) )  i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x) cos(y) )  j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  )  k  is conservative and find a scalar potential  f(x, y, z)   for it that satisfies  f(0, 0, 0)  = 1.    A)    B)  f(x, y, z)  =       + cos(x) sin(y)  +   + 1 C)  f(x, y, z)  =       + sin(x) cos(y)  +   + 1 D)  f(x, y, z)  =       + cos(x) sin(y)  +   E)  f(x, y, z)  = xyz + cos(x) sin(y)  +  Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x) sin(y) )  i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x) cos(y) )  j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  )  k  is conservative and find a scalar potential  f(x, y, z)   for it that satisfies  f(0, 0, 0)  = 1.    A)    B)  f(x, y, z)  =       + cos(x) sin(y)  +   + 1 C)  f(x, y, z)  =       + sin(x) cos(y)  +   + 1 D)  f(x, y, z)  =       + cos(x) sin(y)  +   E)  f(x, y, z)  = xyz + cos(x) sin(y)  +  Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x) sin(y) )  i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x) cos(y) )  j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  )  k  is conservative and find a scalar potential  f(x, y, z)   for it that satisfies  f(0, 0, 0)  = 1.    A)    B)  f(x, y, z)  =       + cos(x) sin(y)  +   + 1 C)  f(x, y, z)  =       + sin(x) cos(y)  +   + 1 D)  f(x, y, z)  =       + cos(x) sin(y)  +   E)  f(x, y, z)  = xyz + cos(x) sin(y)  +  + cos(x) sin(y) + Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x) sin(y) )  i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x) cos(y) )  j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  )  k  is conservative and find a scalar potential  f(x, y, z)   for it that satisfies  f(0, 0, 0)  = 1.    A)    B)  f(x, y, z)  =       + cos(x) sin(y)  +   + 1 C)  f(x, y, z)  =       + sin(x) cos(y)  +   + 1 D)  f(x, y, z)  =       + cos(x) sin(y)  +   E)  f(x, y, z)  = xyz + cos(x) sin(y)  +
E) f(x, y, z) = xyz + cos(x) sin(y) + Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x) sin(y) )  i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x) cos(y) )  j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  )  k  is conservative and find a scalar potential  f(x, y, z)   for it that satisfies  f(0, 0, 0)  = 1.    A)    B)  f(x, y, z)  =       + cos(x) sin(y)  +   + 1 C)  f(x, y, z)  =       + sin(x) cos(y)  +   + 1 D)  f(x, y, z)  =       + cos(x) sin(y)  +   E)  f(x, y, z)  = xyz + cos(x) sin(y)  +

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions