Multiple Choice
Find and classify all critical points of f(x,y,z) = x3 + xz2 + 3x2 + y2 + 2z2 - 9x - 2y -10.
A) local minimum at (-2, 1, 3) , (-2, 1, -3) , (-3, 1, 0) and saddle point at (1, 1, 0)
B) local minimum at (-2, 1, 3) , (-2, 1, -3) and local maximum at (-3, 1, 0) , (1, 1, 0)
C) local minimum at (1, 1, 0 ) and saddle point at (-2, 1, 3) , (-2, 1, -3) , (-3, 1, 0)
D) local maximum at (-2, 1, 3) , (-2, 1, -3) , (-3, 1, 0) and saddle point at (1, 1, 0)
E) local minimum at (-2, 1, 3) , (-3, 1, 0) , local maximum at (1, 1, 0) , and saddle point at (-2, 1, -3)
Correct Answer:

Verified
Correct Answer:
Verified
Q31: Let f(x, y, z) = x<sup>2</sup> +
Q32: Find and classify the critical points of
Q33: If a function f(x,y) has a local
Q34: Find and classify all critical points for
Q35: Find the absolute maximum and minimum
Q37: Find and classify the critical points of
Q38: Find the derivative of the function f(x)
Q39: If the Lagrange function L corresponding to
Q40: By first differentiating the integral, evaluate <img
Q41: (i) Maximize <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="(i) Maximize