Solved

Find the Absolute Maximum and Minimum Values of F(x, Y

Question 67

Multiple Choice

Find the absolute maximum and minimum values of f(x, y, z) = xyz(1 - x2 - y2 - z2) on the tetrahedron bounded by x = 0, y = 0, z = 0, and x + y + z = 2.


A) maximum Find the absolute maximum and minimum values of f(x, y, z)  = xyz(1 - x<sup>2</sup> - y<sup>2</sup> - z<sup>2</sup>)  on the tetrahedron bounded by x = 0, y = 0, z = 0, and x + y + z = 2. A)  maximum   , minimum 0 B)  maximum   , minimum 0 C)  maximum   , minimum 0 D)  maximum   , minimum 0 E)  none of the above , minimum 0
B) maximum Find the absolute maximum and minimum values of f(x, y, z)  = xyz(1 - x<sup>2</sup> - y<sup>2</sup> - z<sup>2</sup>)  on the tetrahedron bounded by x = 0, y = 0, z = 0, and x + y + z = 2. A)  maximum   , minimum 0 B)  maximum   , minimum 0 C)  maximum   , minimum 0 D)  maximum   , minimum 0 E)  none of the above , minimum 0
C) maximum Find the absolute maximum and minimum values of f(x, y, z)  = xyz(1 - x<sup>2</sup> - y<sup>2</sup> - z<sup>2</sup>)  on the tetrahedron bounded by x = 0, y = 0, z = 0, and x + y + z = 2. A)  maximum   , minimum 0 B)  maximum   , minimum 0 C)  maximum   , minimum 0 D)  maximum   , minimum 0 E)  none of the above , minimum 0
D) maximum Find the absolute maximum and minimum values of f(x, y, z)  = xyz(1 - x<sup>2</sup> - y<sup>2</sup> - z<sup>2</sup>)  on the tetrahedron bounded by x = 0, y = 0, z = 0, and x + y + z = 2. A)  maximum   , minimum 0 B)  maximum   , minimum 0 C)  maximum   , minimum 0 D)  maximum   , minimum 0 E)  none of the above , minimum 0
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions