Solved

Consider the Following Periodic Function with Period :
F bn=1(2n1)π,n=1,2,3, b_{n}=\frac{1}{(2 n-1) \pi}, n=1,2,3, \ldots

Question 26

Multiple Choice

Consider the following periodic function with period  Consider the following periodic function with period   : F (t)  =   F   = f (t)  The Fourier representation has the form   Which of these are the coefficients   ? A)    b_{n}=\frac{1}{(2 n-1)  \pi}, n=1,2,3, \ldots   B)    b_{n}=-\frac{2}{\pi} \cdot \frac{1}{2 n-1}, n=1,2,3, \ldots   C)    b_{2 n}=0, b_{2 n-1}=-\frac{2}{\left(4 n^{2}-1\right)  \pi}, n=1,2,3, \ldots   D)    b_{2 n}=-\frac{2}{\left(4 n^{2}-1\right)  \pi}, b_{2 n-1}=0, n=1,2,3, \ldots   E)    b_{n}=0, n=1,2,3, \ldots :
F (t) =  Consider the following periodic function with period   : F (t)  =   F   = f (t)  The Fourier representation has the form   Which of these are the coefficients   ? A)    b_{n}=\frac{1}{(2 n-1)  \pi}, n=1,2,3, \ldots   B)    b_{n}=-\frac{2}{\pi} \cdot \frac{1}{2 n-1}, n=1,2,3, \ldots   C)    b_{2 n}=0, b_{2 n-1}=-\frac{2}{\left(4 n^{2}-1\right)  \pi}, n=1,2,3, \ldots   D)    b_{2 n}=-\frac{2}{\left(4 n^{2}-1\right)  \pi}, b_{2 n-1}=0, n=1,2,3, \ldots   E)    b_{n}=0, n=1,2,3, \ldots
F  Consider the following periodic function with period   : F (t)  =   F   = f (t)  The Fourier representation has the form   Which of these are the coefficients   ? A)    b_{n}=\frac{1}{(2 n-1)  \pi}, n=1,2,3, \ldots   B)    b_{n}=-\frac{2}{\pi} \cdot \frac{1}{2 n-1}, n=1,2,3, \ldots   C)    b_{2 n}=0, b_{2 n-1}=-\frac{2}{\left(4 n^{2}-1\right)  \pi}, n=1,2,3, \ldots   D)    b_{2 n}=-\frac{2}{\left(4 n^{2}-1\right)  \pi}, b_{2 n-1}=0, n=1,2,3, \ldots   E)    b_{n}=0, n=1,2,3, \ldots = f (t)
The Fourier representation has the form  Consider the following periodic function with period   : F (t)  =   F   = f (t)  The Fourier representation has the form   Which of these are the coefficients   ? A)    b_{n}=\frac{1}{(2 n-1)  \pi}, n=1,2,3, \ldots   B)    b_{n}=-\frac{2}{\pi} \cdot \frac{1}{2 n-1}, n=1,2,3, \ldots   C)    b_{2 n}=0, b_{2 n-1}=-\frac{2}{\left(4 n^{2}-1\right)  \pi}, n=1,2,3, \ldots   D)    b_{2 n}=-\frac{2}{\left(4 n^{2}-1\right)  \pi}, b_{2 n-1}=0, n=1,2,3, \ldots   E)    b_{n}=0, n=1,2,3, \ldots
Which of these are the coefficients  Consider the following periodic function with period   : F (t)  =   F   = f (t)  The Fourier representation has the form   Which of these are the coefficients   ? A)    b_{n}=\frac{1}{(2 n-1)  \pi}, n=1,2,3, \ldots   B)    b_{n}=-\frac{2}{\pi} \cdot \frac{1}{2 n-1}, n=1,2,3, \ldots   C)    b_{2 n}=0, b_{2 n-1}=-\frac{2}{\left(4 n^{2}-1\right)  \pi}, n=1,2,3, \ldots   D)    b_{2 n}=-\frac{2}{\left(4 n^{2}-1\right)  \pi}, b_{2 n-1}=0, n=1,2,3, \ldots   E)    b_{n}=0, n=1,2,3, \ldots ?


A) bn=1(2n1) π,n=1,2,3, b_{n}=\frac{1}{(2 n-1) \pi}, n=1,2,3, \ldots
B) bn=2π12n1,n=1,2,3, b_{n}=-\frac{2}{\pi} \cdot \frac{1}{2 n-1}, n=1,2,3, \ldots
C) b2n=0,b2n1=2(4n21) π,n=1,2,3, b_{2 n}=0, b_{2 n-1}=-\frac{2}{\left(4 n^{2}-1\right) \pi}, n=1,2,3, \ldots
D) b2n=2(4n21) π,b2n1=0,n=1,2,3, b_{2 n}=-\frac{2}{\left(4 n^{2}-1\right) \pi}, b_{2 n-1}=0, n=1,2,3, \ldots
E) bn=0,n=1,2,3, b_{n}=0, n=1,2,3, \ldots

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions