Solved

Consider the Following Periodic Function with Period 2?:
F (T) π\pi

Question 10

Multiple Choice

Consider the following periodic function with period 2?:
F (t) =  Consider the following periodic function with period 2?: F (t)  =   F (t + 2  \pi )  = f (t)  Which of these is the Fourier representation for f (t) ? A)    \frac{8}{9}+\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \sin (n t)    B)    \frac{8}{9}+\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \cos (n t)    C)    \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \sin (n t)    D)    \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \cos (n t)
F (t + 2 π\pi ) = f (t)
Which of these is the Fourier representation for f (t) ?


A) 89+8πn=11nsinnπ9sin(nt) \frac{8}{9}+\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \sin (n t)
B) 89+8πn=11nsinnπ9cos(nt) \frac{8}{9}+\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \cos (n t)
C) 8πn=11nsinnπ9sin(nt) \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \sin (n t)
D) 8πn=11nsinnπ9cos(nt) \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{9} \cos (n t)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions