Solved

Find the Fourier Series for F (X) = 4, 0 8πn=1(1)n1nsin2nx3 -\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{n} \cdot \sin \frac{2 n x}{3}

Question 11

Multiple Choice

Find the Fourier series for f (x) = 4, 0 < x <  Find the Fourier series for f (x)  = 4, 0 < x <    A)    -\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1) ^{n}-1}{n} \cdot \sin \frac{2 n x}{3}   B)    \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1) ^{n}+1}{n} \cdot \sin \frac{2 n x}{3}   C)    -\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1) ^{n}-1}{n} \cdot \sin \frac{3 n \pi x}{2}   D)    \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1) ^{n}-1}{n} \cdot \sin \frac{3 n \pi x}{2}   E)    \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1) ^{n}+1}{n} \cdot \sin \frac{3 n \pi x}{2}


A) 8πn=1(1) n1nsin2nx3 -\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1) ^{n}-1}{n} \cdot \sin \frac{2 n x}{3}
B) 8πn=1(1) n+1nsin2nx3 \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1) ^{n}+1}{n} \cdot \sin \frac{2 n x}{3}
C) 8πn=1(1) n1nsin3nπx2 -\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1) ^{n}-1}{n} \cdot \sin \frac{3 n \pi x}{2}
D) 8πn=1(1) n1nsin3nπx2 \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1) ^{n}-1}{n} \cdot \sin \frac{3 n \pi x}{2}
E) 8πn=1(1) n+1nsin3nπx2 \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1) ^{n}+1}{n} \cdot \sin \frac{3 n \pi x}{2}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions