Solved

Consider the First-Order Homogeneous System of Linear Differential Equations

Question 45

Multiple Choice

Consider the first-order homogeneous system of linear differential equations
 Consider the first-order homogeneous system of linear differential equations    The eigenvalues and corresponding eigenvectors for this system are:    Which of these is the general solution for this system? A)   \mathbf{x}(t) =C_{1} e^{t}\left[\begin{array}{l}\sin (5 t)  \\ -\cos (5 t) \end{array}\right) +C_{2} e^{t}\left[\begin{array}{l}-\sin (5 t)  \\ \cos (5 t) \end{array}\right)    B)    \mathbf{x}(t) =C_{1} e^{t}\left(\begin{array}{l}\sin (5 t)  \\ \cos (5 t) \end{array}\right) +C_{2} e^{t}\left(\begin{array}{l}-\sin (5 t)  \\ \cos (5 t) \end{array}\right)    C)    \mathbf{x}(t) =C_{1} e^{t}\left[\begin{array}{l}-\sin (5 t)  \\ \cos (5 t) \end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t)  \\ -\sin (5 t) \end{array}\right)    D)    \mathbf{x}(t) =C_{1} e^{t}\left\{\begin{array}{l}\sin (5 t)  \\ \cos (5 t) \end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t)  \\ -\sin (5 t) \end{array}\right]
The eigenvalues and corresponding eigenvectors for this system are:
 Consider the first-order homogeneous system of linear differential equations    The eigenvalues and corresponding eigenvectors for this system are:    Which of these is the general solution for this system? A)   \mathbf{x}(t) =C_{1} e^{t}\left[\begin{array}{l}\sin (5 t)  \\ -\cos (5 t) \end{array}\right) +C_{2} e^{t}\left[\begin{array}{l}-\sin (5 t)  \\ \cos (5 t) \end{array}\right)    B)    \mathbf{x}(t) =C_{1} e^{t}\left(\begin{array}{l}\sin (5 t)  \\ \cos (5 t) \end{array}\right) +C_{2} e^{t}\left(\begin{array}{l}-\sin (5 t)  \\ \cos (5 t) \end{array}\right)    C)    \mathbf{x}(t) =C_{1} e^{t}\left[\begin{array}{l}-\sin (5 t)  \\ \cos (5 t) \end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t)  \\ -\sin (5 t) \end{array}\right)    D)    \mathbf{x}(t) =C_{1} e^{t}\left\{\begin{array}{l}\sin (5 t)  \\ \cos (5 t) \end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t)  \\ -\sin (5 t) \end{array}\right]
Which of these is the general solution for this system?


A) x(t) =C1et[sin(5t) cos(5t) ) +C2et[sin(5t) cos(5t) ) \mathbf{x}(t) =C_{1} e^{t}\left[\begin{array}{l}\sin (5 t) \\ -\cos (5 t) \end{array}\right) +C_{2} e^{t}\left[\begin{array}{l}-\sin (5 t) \\ \cos (5 t) \end{array}\right)
B) x(t) =C1et(sin(5t) cos(5t) ) +C2et(sin(5t) cos(5t) ) \mathbf{x}(t) =C_{1} e^{t}\left(\begin{array}{l}\sin (5 t) \\ \cos (5 t) \end{array}\right) +C_{2} e^{t}\left(\begin{array}{l}-\sin (5 t) \\ \cos (5 t) \end{array}\right)
C) x(t) =C1et[sin(5t) cos(5t) ]+C2et[cos(5t) sin(5t) ) \mathbf{x}(t) =C_{1} e^{t}\left[\begin{array}{l}-\sin (5 t) \\ \cos (5 t) \end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t) \\ -\sin (5 t) \end{array}\right)
D) x(t) =C1et{sin(5t) cos(5t) ]+C2et[cos(5t) sin(5t) ] \mathbf{x}(t) =C_{1} e^{t}\left\{\begin{array}{l}\sin (5 t) \\ \cos (5 t) \end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t) \\ -\sin (5 t) \end{array}\right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions