Solved

Consider the First-Order Homogeneous System of Linear Differential Equations
x(t)=C1(10)e2t+C2(11) \mathbf{x}(t)=C_{1}\left(\begin{array}{c}-1 \\ 0\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}-1 \\ 1\end{array}\right)

Question 42

Multiple Choice

Consider the first-order homogeneous system of linear differential equations
 Consider the first-order homogeneous system of linear differential equations   Which of these is the general solution of the system? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants. A)    \mathbf{x}(t) =C_{1}\left(\begin{array}{c}-1 \\ 0\end{array}\right)  e^{-2 t}+C_{2}\left(\begin{array}{c}-1 \\ 1\end{array}\right)    B)    x(t) =C_{1}\left(\begin{array}{c}-1 \\ 0\end{array}\right)  e^{-2 t}+C_{2}\left(\begin{array}{c}1 \\ -1\end{array}\right)    C)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}1 \\ 0\end{array}\right)  e^{2 t}+C_{2}\left(\begin{array}{c}-1 \\ 1\end{array}\right)    D)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}0 \\ 1\end{array}\right)  e^{2 t}+C_{2}\left(\begin{array}{l}1 \\ -1\end{array}\right)
Which of these is the general solution of the system? Here, C1 and C2 are arbitrary real constants.


A) x(t) =C1(10) e2t+C2(11) \mathbf{x}(t) =C_{1}\left(\begin{array}{c}-1 \\ 0\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}-1 \\ 1\end{array}\right)
B) x(t) =C1(10) e2t+C2(11) x(t) =C_{1}\left(\begin{array}{c}-1 \\ 0\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}1 \\ -1\end{array}\right)
C) x(t) =C1(10) e2t+C2(11) \mathbf{x}(t) =C_{1}\left(\begin{array}{l}1 \\ 0\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{c}-1 \\ 1\end{array}\right)
D) x(t) =C1(01) e2t+C2(11) \mathbf{x}(t) =C_{1}\left(\begin{array}{l}0 \\ 1\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{l}1 \\ -1\end{array}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions