Solved

Consider the Bessel Equation of Order \neq 0
Which of These Is the Explicit Formula for the Method

Question 44

Multiple Choice

Consider the Bessel equation of order  Consider the Bessel equation of order   . Suppose the method of Frobenius is used to determine a power series solution of the form   . Of this differential equation. Assume a<sub>0</sub>  \neq  0. Which of these is the explicit formula for the coefficients corresponding to the positive root of the indicial equation? A)    a_{2 n}=0   and   a_{2 n+1}=(-1) ^{n} \cdot \frac{a_{0} \cdot 4 !}{2^{n+1}(n+1)  !(n+4)  !}, n \geq 1   B)    a_{2 n}=0   and   a_{2 n+1}=(-1) ^{n} \cdot \frac{a_{0} \cdot 4 !}{2^{2 n} n !(n+4)  !}, n \geq 1   C)    a_{2 n+1}=0   and   a_{2 n}=(-1) ^{n-1} \cdot \frac{a_{0} \cdot 4 !}{2^{n} n !(n+4)  !}, n \geq 1   D)    a_{2 n+1}=0   and   a_{2 n}=(-1) ^{n} \cdot \frac{a_{0} \cdot 4 !}{2^{2 n} n !(n+4)  !}, n \geq 1 .
Suppose the method of Frobenius is used to determine a power series solution of the form  Consider the Bessel equation of order   . Suppose the method of Frobenius is used to determine a power series solution of the form   . Of this differential equation. Assume a<sub>0</sub>  \neq  0. Which of these is the explicit formula for the coefficients corresponding to the positive root of the indicial equation? A)    a_{2 n}=0   and   a_{2 n+1}=(-1) ^{n} \cdot \frac{a_{0} \cdot 4 !}{2^{n+1}(n+1)  !(n+4)  !}, n \geq 1   B)    a_{2 n}=0   and   a_{2 n+1}=(-1) ^{n} \cdot \frac{a_{0} \cdot 4 !}{2^{2 n} n !(n+4)  !}, n \geq 1   C)    a_{2 n+1}=0   and   a_{2 n}=(-1) ^{n-1} \cdot \frac{a_{0} \cdot 4 !}{2^{n} n !(n+4)  !}, n \geq 1   D)    a_{2 n+1}=0   and   a_{2 n}=(-1) ^{n} \cdot \frac{a_{0} \cdot 4 !}{2^{2 n} n !(n+4)  !}, n \geq 1 .
Of this differential equation. Assume a0 \neq 0.
Which of these is the explicit formula for the coefficients corresponding to the positive root of the indicial equation?


A) a2n=0 a_{2 n}=0 and a2n+1=(1) na04!2n+1(n+1) !(n+4) !,n1 a_{2 n+1}=(-1) ^{n} \cdot \frac{a_{0} \cdot 4 !}{2^{n+1}(n+1) !(n+4) !}, n \geq 1
B) a2n=0 a_{2 n}=0 and a2n+1=(1) na04!22nn!(n+4) !,n1 a_{2 n+1}=(-1) ^{n} \cdot \frac{a_{0} \cdot 4 !}{2^{2 n} n !(n+4) !}, n \geq 1
C) a2n+1=0 a_{2 n+1}=0 and a2n=(1) n1a04!2nn!(n+4) !,n1 a_{2 n}=(-1) ^{n-1} \cdot \frac{a_{0} \cdot 4 !}{2^{n} n !(n+4) !}, n \geq 1
D) a2n+1=0 a_{2 n+1}=0 and a2n=(1) na04!22nn!(n+4) !,n1 a_{2 n}=(-1) ^{n} \cdot \frac{a_{0} \cdot 4 !}{2^{2 n} n !(n+4) !}, n \geq 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions