Solved

What Is the General Solution of the Third-Order Homogeneous Cauchy y=C1lnx+C2ln(x1)+C3ln(x2) y=C_{1} \ln x+C_{2} \ln \left(x^{-1}\right)+C_{3} \ln \left(x^{2}\right)

Question 49

Multiple Choice

What is the general solution of the third-order homogeneous Cauchy Euler differential equation
 What is the general solution of the third-order homogeneous Cauchy Euler differential equation   A)    y=C_{1} \ln x+C_{2} \ln \left(x^{-1}\right) +C_{3} \ln \left(x^{2}\right)    B)    y=C_{1} x^{-2}+C_{2} x^{-1}+C_{3} x   C)    y=C_{1} x^{2}+C_{2} x+C_{3} x^{-1}   D)    y=C_{1} \ln x+C_{2}(\ln x) ^{2}+C_{3}(\ln x) ^{-1}


A) y=C1lnx+C2ln(x1) +C3ln(x2) y=C_{1} \ln x+C_{2} \ln \left(x^{-1}\right) +C_{3} \ln \left(x^{2}\right)
B) y=C1x2+C2x1+C3x y=C_{1} x^{-2}+C_{2} x^{-1}+C_{3} x
C) y=C1x2+C2x+C3x1 y=C_{1} x^{2}+C_{2} x+C_{3} x^{-1}
D) y=C1lnx+C2(lnx) 2+C3(lnx) 1 y=C_{1} \ln x+C_{2}(\ln x) ^{2}+C_{3}(\ln x) ^{-1}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions