Solved

What Is the General Solution of the Third-Order Homogeneous Differential y=C1e4t+C2te4t+C3t2e4t+C4 y=C_{1} e^{-4 t}+C_{2} t e^{-4 t}+C_{3} t^{2} e^{-4 t}+C_{4}

Question 47

Multiple Choice

What is the general solution of the third-order homogeneous differential equation  What is the general solution of the third-order homogeneous differential equation   A)    y=C_{1} e^{-4 t}+C_{2} t e^{-4 t}+C_{3} t^{2} e^{-4 t}+C_{4}   B)    y=C_{1} e^{-4 t}+C_{2} t e^{-4 t}+C_{3} t^{2} e^{-4 t}+C_{4}  . C)    y=C_{1} e^{-4 t}+C_{2} t e^{-4 t}+C_{3} t^{2} e^{-4 t}   D)    y=C_{1} e^{-4 t}+C_{2} t e^{-4 t}+C_{3} t^{2} e^{-4 t}  . E)    y=C_{1} e^{-4 t}+C_{2} t e^{-4 t}+C_{3} e^{-4 t}


A) y=C1e4t+C2te4t+C3t2e4t+C4 y=C_{1} e^{-4 t}+C_{2} t e^{-4 t}+C_{3} t^{2} e^{-4 t}+C_{4}
B) y=C1e4t+C2te4t+C3t2e4t+C4 y=C_{1} e^{-4 t}+C_{2} t e^{-4 t}+C_{3} t^{2} e^{-4 t}+C_{4} .
C) y=C1e4t+C2te4t+C3t2e4t y=C_{1} e^{-4 t}+C_{2} t e^{-4 t}+C_{3} t^{2} e^{-4 t}
D) y=C1e4t+C2te4t+C3t2e4t y=C_{1} e^{-4 t}+C_{2} t e^{-4 t}+C_{3} t^{2} e^{-4 t} .
E) y=C1e4t+C2te4t+C3e4t y=C_{1} e^{-4 t}+C_{2} t e^{-4 t}+C_{3} e^{-4 t}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions