Solved

Which of the Following Is the General Solution of the Homogeneous

Question 48

Multiple Choice

Which of the following is the general solution of the homogeneous second-order differential equation  Which of the following is the general solution of the homogeneous second-order differential equation   are arbitrary real constants. A)    y=C\left(e^{5 t}+e^{10 t}\right)    B)    y=C_{1} e^{-5 t}+C_{2} e^{-10 t}   C)    y=C_{1} e^{5 t}+C_{2} e^{10 t}   D)    y=C\left(e^{-5 t}+e^{-10 t}\right)    E)    y=C_{1} e^{-5 t}+C_{2} e^{-10 t}+y+\left(C_{1} e^{-5 t}\right)  \cdot\left(C_{2} e^{-10 t}\right)    F)    y=\left(C_{1} e^{-5 t}\right)  \cdot\left(C_{2} e^{-10 t}\right)  are arbitrary real constants.


A) y=C(e5t+e10t) y=C\left(e^{5 t}+e^{10 t}\right)
B) y=C1e5t+C2e10t y=C_{1} e^{-5 t}+C_{2} e^{-10 t}
C) y=C1e5t+C2e10t y=C_{1} e^{5 t}+C_{2} e^{10 t}
D) y=C(e5t+e10t) y=C\left(e^{-5 t}+e^{-10 t}\right)
E) y=C1e5t+C2e10t+y+(C1e5t) (C2e10t) y=C_{1} e^{-5 t}+C_{2} e^{-10 t}+y+\left(C_{1} e^{-5 t}\right) \cdot\left(C_{2} e^{-10 t}\right)
F) y=(C1e5t) (C2e10t) y=\left(C_{1} e^{-5 t}\right) \cdot\left(C_{2} e^{-10 t}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions