Solved

Which of the Following Is the General Solution of the Homogeneous

Question 19

Multiple Choice

Which of the following is the general solution of the homogeneous second-order differential equation  Which of the following is the general solution of the homogeneous second-order differential equation    are arbitrary real constants. A)    y=C_{1} e^{4 t} \sin (6 t) +C_{2} e^{4 t} \cos (6 t)    B)    y=e^{-4 t}\left(C_{1} \sin (6 t) +C_{2} \cos (6 t) \right)    C)    y=C_{1} e^{4 t} \cos (6 t) +C_{2} e^{4 t} \sin (6 t) +C   D)    y=e^{6 t}(\sin (4 t) +\cos (6 t) ) +C   E)    y=C_{1} e^{-4 t} \sin (6 t) +C_{2} e^{-4 t} \cos (6 t) +C
are arbitrary real constants.


A) y=C1e4tsin(6t) +C2e4tcos(6t) y=C_{1} e^{4 t} \sin (6 t) +C_{2} e^{4 t} \cos (6 t)
B) y=e4t(C1sin(6t) +C2cos(6t) ) y=e^{-4 t}\left(C_{1} \sin (6 t) +C_{2} \cos (6 t) \right)
C) y=C1e4tcos(6t) +C2e4tsin(6t) +C y=C_{1} e^{4 t} \cos (6 t) +C_{2} e^{4 t} \sin (6 t) +C
D) y=e6t(sin(4t) +cos(6t) ) +C y=e^{6 t}(\sin (4 t) +\cos (6 t) ) +C
E) y=C1e4tsin(6t) +C2e4tcos(6t) +C y=C_{1} e^{-4 t} \sin (6 t) +C_{2} e^{-4 t} \cos (6 t) +C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions