Solved

What Is the General Solution of the Homogeneous Second-Order Cauchy y=C1t6+C2t6 y=C_{1} t^{-6}+C_{2} t^{6}

Question 9

Multiple Choice

What is the general solution of the homogeneous second-order Cauchy Euler differential equation  What is the general solution of the homogeneous second-order Cauchy Euler differential equation   are arbitrary real constants. A)    y=C_{1} t^{-6}+C_{2} t^{6}   B)    y=C_{1}(t \ln t) ^{-6}+C_{2}(t \ln t) ^{6}   C)    y=t^{-6}\left(C_{1}+C_{2} \ln t\right)    D)    y=C_{1} t^{-6}+C_{2}(t \ln t) ^{-6} are arbitrary real constants.


A) y=C1t6+C2t6 y=C_{1} t^{-6}+C_{2} t^{6}
B) y=C1(tlnt) 6+C2(tlnt) 6 y=C_{1}(t \ln t) ^{-6}+C_{2}(t \ln t) ^{6}
C) y=t6(C1+C2lnt) y=t^{-6}\left(C_{1}+C_{2} \ln t\right)
D) y=C1t6+C2(tlnt) 6 y=C_{1} t^{-6}+C_{2}(t \ln t) ^{-6}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions