Solved

Which of These Is the General Solution of the Second-Order y(t)=C1e12t+C2te12t+(At2+Bt+C)e12t+D y(t)=C_{1} e^{\frac{1}{2} t}+C_{2} t e^{\frac{1}{2} t}+\left(A t^{2}+B t+C\right) e^{\frac{1}{2} t}+D

Question 70

Multiple Choice

Which of these is the general solution of the second-order nonhomogeneous differential equation  Which of these is the general solution of the second-order nonhomogeneous differential equation    and all capital letters are arbitrary real constants. A)    y(t) =C_{1} e^{\frac{1}{2} t}+C_{2} t e^{\frac{1}{2} t}+\left(A t^{2}+B t+C\right)  e^{\frac{1}{2} t}+D   B)    y(t) =C_{1} e^{\frac{1}{2} t}+C_{2} t e^{\frac{1}{2} t}+A e^{\frac{1}{2} t}+B   C)    y(t) =e^{\frac{1}{2} t}\left(C_{1}+C_{2} t\right) +(A t+B)  e^{\frac{1}{2} t}+C   D)    y(t) =e^{-\frac{1}{2} t}\left(C_{1}+C_{2} t\right) +\left(A t^{2}+B t+C\right)  e^{\frac{1}{2} t}+D   E)    y(t) =e^{-\frac{1}{2} t}\left(C_{1}+C_{2} t\right) +A e^{\frac{1}{2} t}+B
and all capital letters are arbitrary real constants.


A) y(t) =C1e12t+C2te12t+(At2+Bt+C) e12t+D y(t) =C_{1} e^{\frac{1}{2} t}+C_{2} t e^{\frac{1}{2} t}+\left(A t^{2}+B t+C\right) e^{\frac{1}{2} t}+D
B) y(t) =C1e12t+C2te12t+Ae12t+B y(t) =C_{1} e^{\frac{1}{2} t}+C_{2} t e^{\frac{1}{2} t}+A e^{\frac{1}{2} t}+B
C) y(t) =e12t(C1+C2t) +(At+B) e12t+C y(t) =e^{\frac{1}{2} t}\left(C_{1}+C_{2} t\right) +(A t+B) e^{\frac{1}{2} t}+C
D) y(t) =e12t(C1+C2t) +(At2+Bt+C) e12t+D y(t) =e^{-\frac{1}{2} t}\left(C_{1}+C_{2} t\right) +\left(A t^{2}+B t+C\right) e^{\frac{1}{2} t}+D
E) y(t) =e12t(C1+C2t) +Ae12t+B y(t) =e^{-\frac{1}{2} t}\left(C_{1}+C_{2} t\right) +A e^{\frac{1}{2} t}+B

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions