Multiple Choice
The radius, , of a right circular cone can be found using the formula , where is the volume and is the height. If the volume is 680 cubic inches and the height is 6 inches, what is the radius? (Use 3.14 for , and round your answer to the nearest tenth of an inch.)
A) .
B) .
C) .
D) .
Correct Answer:

Verified
Correct Answer:
Verified
Q82: Simplify by rationalizing the denominator. Write
Q83: The velocity <span class="ql-formula" data-value="\mathrm{v}"><span
Q84: <span class="ql-formula" data-value="\sqrt[3]{750}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mroot><mn>750</mn><mn>3</mn></mroot></mrow><annotation encoding="application/x-tex">\sqrt[3]{750}</annotation></semantics></math></span><span
Q85: Simplify the radical expression. Assume all
Q86: Multiply. Write your answer in a
Q88: Solve. Check for extraneous solutions.<br>- <span
Q89: Multiply<br>- <span class="ql-formula" data-value="(\sqrt{13}+\sqrt{3})(\sqrt{3}+\sqrt{2})"><span class="katex"><span class="katex-mathml"><math
Q90: Expressions of the form <span
Q91: <span class="ql-formula" data-value="\sqrt[4]{768}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mroot><mn>768</mn><mn>4</mn></mroot></mrow><annotation encoding="application/x-tex">\sqrt[4]{768}</annotation></semantics></math></span><span
Q92: A pendulum has a length of