Solved

Rewrite the Given Expression as a Single Logarithm (logxxlogxy)+3logxz\left(\log _{\mathrm{x}} \mathrm{x}-\log _{\mathrm{x}} \mathrm{y}\right)+3 \log _{\mathrm{x}} \mathrm{z}

Question 192

Multiple Choice

Rewrite the given expression as a single logarithm. Assume that all variables are defined in such a way that variable expressions are positive and bases are positive numbers not equal to 1 .
- (logxxlogxy) +3logxz\left(\log _{\mathrm{x}} \mathrm{x}-\log _{\mathrm{x}} \mathrm{y}\right) +3 \log _{\mathrm{x}} \mathrm{z}


A) logxxz3y\log _{x} \frac{x z^{3}}{y}

B) logxxz3y\log _{x} x z^{3} y

C) logx3xzy\log _{x} \frac{3 x z}{y}

D) logxxz3y\log _{x} \frac{x}{z^{3} y}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions