Solved

Graph the Function f(x)=x4f(x)=|x-4| A) Domain (,)(-\infty, \infty) ; Range [0,)[0, \infty) B) Domain

Question 31

Multiple Choice

Graph the function. Give the domain and range.
- f(x) =x4f(x) =|x-4|
 Graph the function. Give the domain and range. - f(x) =|x-4|     A)  Domain:  (-\infty, \infty)  ; Range:  [0, \infty)      B)  Domain:  (-\infty, \infty)  ; Range:  [-4, \infty)     C)  Domain:  (-\infty, \infty)  ; Range:  [4, \infty)      D)  Domain:  (-\infty, \infty)  ; Range:  [0, \infty)


A) Domain: (,) (-\infty, \infty) ; Range: [0,) [0, \infty)
 Graph the function. Give the domain and range. - f(x) =|x-4|     A)  Domain:  (-\infty, \infty)  ; Range:  [0, \infty)      B)  Domain:  (-\infty, \infty)  ; Range:  [-4, \infty)     C)  Domain:  (-\infty, \infty)  ; Range:  [4, \infty)      D)  Domain:  (-\infty, \infty)  ; Range:  [0, \infty)

B) Domain: (,) (-\infty, \infty) ; Range: [4,) [-4, \infty)
 Graph the function. Give the domain and range. - f(x) =|x-4|     A)  Domain:  (-\infty, \infty)  ; Range:  [0, \infty)      B)  Domain:  (-\infty, \infty)  ; Range:  [-4, \infty)     C)  Domain:  (-\infty, \infty)  ; Range:  [4, \infty)      D)  Domain:  (-\infty, \infty)  ; Range:  [0, \infty)
C) Domain: (,) (-\infty, \infty) ; Range: [4,) [4, \infty)
 Graph the function. Give the domain and range. - f(x) =|x-4|     A)  Domain:  (-\infty, \infty)  ; Range:  [0, \infty)      B)  Domain:  (-\infty, \infty)  ; Range:  [-4, \infty)     C)  Domain:  (-\infty, \infty)  ; Range:  [4, \infty)      D)  Domain:  (-\infty, \infty)  ; Range:  [0, \infty)

D) Domain: (,) (-\infty, \infty) ; Range: [0,) [0, \infty)
 Graph the function. Give the domain and range. - f(x) =|x-4|     A)  Domain:  (-\infty, \infty)  ; Range:  [0, \infty)      B)  Domain:  (-\infty, \infty)  ; Range:  [-4, \infty)     C)  Domain:  (-\infty, \infty)  ; Range:  [4, \infty)      D)  Domain:  (-\infty, \infty)  ; Range:  [0, \infty)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions