Solved

Use the Integral Test to Investigate the Series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}}

Question 9

Multiple Choice

Use the integral test to investigate the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} .


A) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x=2 , so the series n=11n3/2=2\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}=2 .
B) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{\mathrm{x}^{3 / 2}} \mathrm{dx}=2 , so the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} converges.
C) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{\mathrm{x}^{3 / 2}} \mathrm{dx}=2 , so the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} diverges.
D) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x=2 , so the test fails to tell us anything about the series.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions