Solved

Investigate the Alternating Series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}
A) the P- Series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}}

Question 7

Multiple Choice

Investigate the alternating series n=1(1) n+1n2\sum_{n=1}^{\infty} \frac{(-1) ^{n+1}}{n^{2}} .


A) The p- series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} converges, so the series n=1(1) n+1n2\sum_{n=1}^{\infty} \frac{(-1) ^{n+1}}{n^{2}} converges absolutely.
B) The p-series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} diverges, so the series n=1(1) n+1n2\sum_{n=1}^{\infty} \frac{(-1) ^{n+1}}{n^{2}} converges conditionally.
C) The ratio test gives r=1\mathrm{r}=1 , so the series n=1(1) n+1n2\sum_{\mathrm{n}=1}^{\infty} \frac{(-1) ^{\mathrm{n}+1}}{\mathrm{n}^{2}} diverges.
D) The p-series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} diverges, so the series n=1(1) n+1n2\sum_{n=1}^{\infty} \frac{(-1) ^{n+1}}{n^{2}} diverges.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions