Solved

Find the General Solution of the Differential Equation y4y=8e2xy^{\prime \prime}-4 y=8 e^{2 x}

Question 15

Multiple Choice

Find the general solution of the differential equation y4y=8e2xy^{\prime \prime}-4 y=8 e^{2 x} .


A) y=k1sin2x+k2cos2x+e2xy=k_{1} \sin 2 x+k_{2} \cos 2 x+e^{2 x}
B) y=k1e2x+k2e2x+2xe2xy=k_{1} e^{-2 x}+k_{2} e^{2 x}+2 x e^{2 x}
C) y=k1sin2x+k2cos2x+xe2xy=k_{1} \sin 2 x+k_{2} \cos 2 x+x e^{2 x}
D) y=k1e2x+k2e2x+xe2xy=k_{1} e^{-2 x}+k_{2} e^{2 x}+x e^{2 x}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions