Multiple Choice
Xavier, Yolanda, and Zachary are considering whether to pool their funds to buy into a lottery. There is a 20% chance that they will win big and make $8 million dollars, a 40% chance that they will win second prize and make $2 million, and a 40% chance that they will lose and win nothing. The entrance fee to participate in this lottery is $2 million. The partners decide whether or not to play by majority vote. Assume that Xavier has utility function u(x) = x². The other two partners have utility function u(x) = x, where x is the total amount of money won in the lottery. Will the partners buy in?
A) All three will vote to buy in, so the partnership as a whole will buy in
B) Only Xavier will vote to buy in, so the partnership as a whole will not buy in
C) Yolanda and Zachary will vote to buy in, so the partnership as a whole will buy in
Correct Answer:

Verified
Correct Answer:
Verified
Q30: Agents _ simply choose the option that
Q31: The sum of the various values that
Q32: The distribution that tells us the likelihood
Q33: Variance is a measure that tries to
Q34: Risk neutral is a characteristic of an
Q35: An agent who has a linear utility
Q36: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB5736/.jpg" alt=" -Refer to Exhibit
Q37: What are the characteristics of a risk
Q38: A probability distribution with a finite number
Q39: A risk-preferring agent will<br>A) reject a "fair