Services
Discover
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Statistics
Study Set
Business Statistics in Practice Study Set 1
Exam 12: Multiple Regression and Model Building
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 61
Multiple Choice
Given the regression model y = β
0
+ β
1
X
1
+ β
2
X
2
+ β
3
X
1
2
+ β
4
X
2
2
+ ε,if we wish to test the significance of higher order terms, (X
1
2
and X
2
2
) we would use the following test:
Question 62
True/False
The standard error decreases if and only if the adjusted multiple coefficient of determination decreases.
Question 63
Essay
The manufacturer of a light fixture believes that the dollars spent on advertising,the price of the fixture,and the number of retail stores selling the fixture in a particular month influence the light fixture sales.The manufacturer randomly selects 10 months and collects the following data:
Sales
Advertising
Price
# of stores
41
20
40
1
42
40
60
3
59
40
20
4
60
50
80
5
81
50
10
6
80
60
40
6
100
70
20
7
82
70
60
8
101
80
30
9
110
90
40
10
\begin{array} { l l l l } \text { Sales } & \text { Advertising } & \text { Price } & \text { \# of stores } \\41 & 20 & 40 & 1 \\42 & 40 & 60 & 3 \\59 & 40 & 20 & 4 \\60 & 50 & 80 & 5 \\81 & 50 & 10 & 6 \\80 & 60 & 40 & 6 \\100 & 70 & 20 & 7 \\82 & 70 & 60 & 8 \\101 & 80 & 30 & 9 \\110 & 90 & 40 & 10\end{array}
Sales
41
42
59
60
81
80
100
82
101
110
Advertising
20
40
40
50
50
60
70
70
80
90
Price
40
60
20
80
10
40
20
60
30
40
# of stores
1
3
4
5
6
6
7
8
9
10
The sales are in thousands of units per month,the advertising is given in hundreds of dollars per month,the price is the unit retail price for the particular month.With this data,the following computer output is obtained. The regression equation is Sales = 31.0 + 0.820 Advertising - 0.325 Price + 1.84 Stores
Predictor
Coef
StDev
T
P
Constant
30.992
7.728
4.01
0.007
Advertising
0.8202
0.5023
1.63
0.154
Price
−
0.32502
0.08935
−
3.64
0.011
Stores
1.841
3.855
0.48
0.650
\begin{array} { l l l l l } \text { Predictor } & \text { Coef } & \text { StDev } & \mathrm { T } & \mathrm { P } \\\text { Constant } & 30.992 & 7.728 & 4.01 & 0.007 \\\text { Advertising } & 0.8202 & 0.5023 & 1.63 & 0.154 \\\text { Price } & - 0.32502 & 0.08935 & - 3.64 & 0.011 \\\text { Stores } & 1.841 & 3.855 & 0.48 & 0.650\end{array}
Predictor
Constant
Advertising
Price
Stores
Coef
30.992
0.8202
−
0.32502
1.841
StDev
7.728
0.5023
0.08935
3.855
T
4.01
1.63
−
3.64
0.48
P
0.007
0.154
0.011
0.650
S = 5.465 R-Sq = 96.7% R-Sq(adj)= 95.0% Analysis of Variance
Source
DF
SS
MS
F
P
Regression
3
5179.2
1726.4
57.81
0.000
Residual Error
6
179.2
29.9
\begin{array} { l l l l l l } \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\text { Regression } & 3 & 5179.2 & 1726.4 & 57.81 & 0.000 \\\text { Residual Error } & 6 & 179.2 & 29.9 & &\end{array}
Source
Regression
Residual Error
DF
3
6
SS
5179.2
179.2
MS
1726.4
29.9
F
57.81
P
0.000
Based on the multiple regression model given above,the point estimate of the monthly light fixture sales corresponding to second sample data is 49.82 or 49,820 units.This point estimate is calculated based on the assumption that the company spends $4000 on advertising,the price of the fixture is $60,and the fixture is being sold at 3 retail stores.Additional information related to this point estimate is given below.
Obs.
Advert
Sales
Fit
StDev Fit
Residual
St Resid.
2
40.0
42.00
49.82
3.53
−
7.82
−
1.87
\begin{array} { l l l l l l l } \text { Obs. } & \text { Advert } & \text { Sales } & \text { Fit } & \text { StDev Fit } & \text { Residual } & \text { St Resid. } \\2 & 40.0 & 42.00 & 49.82 & 3.53 & - 7.82 & - 1.87\end{array}
Obs.
2
Advert
40.0
Sales
42.00
Fit
49.82
StDev Fit
3.53
Residual
−
7.82
St Resid.
−
1.87
-Determine the 95% confidence interval for this point estimate and interpret its meaning.
Question 64
Essay
Below is a partial multiple regression ANOVA table.
Source
SS
df
Model
0.242
2
Error
0.105
3
\begin{array} { l l l } \text { Source } & \text { SS } & \text { df } \\\text { Model } & 0.242 & 2 \\\text { Error } & 0.105 & 3\end{array}
Source
Model
Error
SS
0.242
0.105
df
2
3
-What is the total sum of squares (total variation),explained variation,mean square error and the number of observations in the sample?
Question 65
Essay
Consider the following partial computer output for a multiple regression model.
Predictor
Coefficient
(
b
i
)
Standard Dev
(
s
b
)
Constant
99.3883
X1
−
0.007207
0.0031
X2
0.0011336
0.00122
X3
0.9324
0.373
Analysis of Variance
SS
Source
df
31.308
Regression
3
9.378
\begin{array} { l l l } \text { Predictor } & \text { Coefficient } \left( \mathrm { b } _ { \mathrm { i } } \right) & \text { Standard Dev } \left( \mathrm { s } _ { \mathrm { b } } \right) \\\text { Constant } & 99.3883 & \\\text { X1 } & - 0.007207 & 0.0031 \\\text { X2 } & 0.0011336 & 0.00122 \\\text { X3 } & 0.9324 & 0.373 \\& & \\\text { Analysis of Variance } & & \text { SS } \\\text { Source } & \text { df } & 31.308 \\\text { Regression } & 3 & 9.378\end{array}
Predictor
Constant
X1
X2
X3
Analysis of Variance
Source
Regression
Coefficient
(
b
i
)
99.3883
−
0.007207
0.0011336
0.9324
df
3
Standard Dev
(
s
b
)
0.0031
0.00122
0.373
SS
31.308
9.378
-Consider the following analysis of variance table from a multiple regression model.Test the model for overall usefulness at
Question 66
Multiple Choice
Below is a partial multiple regression ANOVA table.
Source
SS
df
X
1
535.9569
1
X
2
1
,
167.5634
1
X
3
18.9886
1
Error
3
,
459.6803
8
\begin{array} { l l l } \text { Source } & \text { SS } & \text { df } \\\mathrm { X } _ { 1 } & 535.9569 & 1 \\\mathrm { X } _ { 2 } & 1,167.5634 & 1 \\\mathrm { X } _ { 3 } & 18.9886 & 1 \\\text { Error } & 3,459.6803 & 8\end{array}
Source
X
1
X
2
X
3
Error
SS
535.9569
1
,
167.5634
18.9886
3
,
459.6803
df
1
1
1
8
-What is the total sum of squares (total variation) ?
Question 67
Essay
The management of a professional baseball team is in the process of determining the budget for next year.A major component of future revenue is attendance at the home games.In order to predict attendance at home games,the team's statistician has used a multiple regression model with dummy variables.The model is of the form: y = β
0
+ β
1
x
1
+ β
2
x
2
+ β
3
x
3
+ ε where: Y = attendance at a home game x1= current power rating of the team on a scale from 0 to 100 before the game. x2and x3are dummy variables,and they are defined below. x2= 1,if weekend x2= 0,otherwise x3= 1,if weather is favourable x3= 0,otherwise After collecting the data based on 30 games from last year and implementing the above stated multiple regression model,the team statistician obtained the following least squares multiple regression equation:
y
^
=
−
1050
+
250
x
1
+
2200
x
2
+
5400
x
3
\hat { y } = - 1050 + 250 x _ { 1 } + 2200 x _ { 2 } + 5400 x _ { 3 }
y
^
=
−
1050
+
250
x
1
+
2200
x
2
+
5400
x
3
The multiple regression compute output also indicated the following:
s
b
1
=
800
,
s
b
2
=
1000
,
s
b
3
=
1850
s _ { b _ { 1 } } = 800 , s _ { b _ { 2 } } = 1000 , s _ { b _ { 3 } } = 1850
s
b
1
=
800
,
s
b
2
=
1000
,
s
b
3
=
1850
-Interpret the estimated model coefficient b1
Question 68
True/False
Completely randomized analysis of variance models (one-way ANOVA)can always be converted to a multiple regression models with dummy independent variables.
Question 69
True/False
R
2
is defined as the proportion of the observed variation in the dependent variable that is explained by the fitted regression model.
Question 70
Multiple Choice
Multicollinearity between independent variables is serious when the correlation between pair(s) of dependent variables is _____.
Question 71
Multiple Choice
Given the regression model y = β
0
+ β
1
X
1
+ β
2
X
1
2
+ ε,if we wish to test the significance of X
1
2
,the appropriate null hypothesis is: