Solved

In the Case When the Errors Are Homoskedastic and Normally β^\hat \beta

Question 1

Multiple Choice

In the case when the errors are homoskedastic and normally distributed, conditional on X, then


A) β^\hat \beta is distributed N(?, β^X\sum _ { \hat { \beta } \mid X } ) ,where β^X\sum _ { \hat { \beta } \mid X } = σu2\sigma _ { u } ^ { 2 } I(k+1) .
B) β^\hat \beta is distributed N(?, β^\sum _ { \hat { \beta } } ) , where β^\sum _ { \hat { \beta } } = n(β^β) \sum _ { \sqrt { n } \left( \hat { \boldsymbol { \beta } } _ { - } \boldsymbol { \beta } \right) } /n = QX1Q _ { X } ^ { - 1 } V\sum _ { V } QX1Q _ { X } ^ { - 1 } /n.
C) β^\hat \beta is distributed N(?, β^X\sum _ { \hat { \beta } \mid X } ) ,where β^X\sum _ { \hat { \beta } \mid X } = σu2\sigma _ { u } ^ { 2 } ( XX ^ { \prime } X) -1.
D) u^\hat { u } = PXY where PX = X( XX ^ { \prime } X) -1 XX ^ { \prime }

Correct Answer:

verifed

Verified

Related Questions