Solved

Here Are Plots of Data for Studentized Residuals Against Length

Question 8

Essay

Here are plots of data for Studentized residuals against Length.  Here are plots of data for Studentized residuals against Length.   Here is the same regression with all of the points at 70 removed. Dependent variable is: Weight 30 total bears of which 10 are missing R-squared = 97.8% R-squared (adjusted)= 97.3% s = 2.96 with 20 - 4 = 16 degrees of freedom  \begin{array} { l r r r r }  & \text { Sum of } & & { \text { Mean } } \\ \text { Source } & \text { Squares } & \text { DF } & \text { Square } & \text { F-ratio } \\ \text { Regression } & 7455.0 & 3 & 2485 & 238.26 \\ \text { Residual } & 166.89 & 16 & 10.43 & \end{array}   \begin{array} { l r c r r }  \text { Variable } & \text { Coefficient } & \text { SE(Coeff) } & \text { t-ratio } & \text { P-value } \\ \text { Intercept } & - 169.16 & 3.23 & - 52.37 & < 0.0001 \\ \text { Chest } & 0.84 & 0.58 & 1.45 & 0.1590 \\ \text { Length } & 5.59 & 2.14 & 2.61 & 0.0148 \\ \text { Sex } & - 1.19 & 1.98 & - 0.60 & 0.5537 \end{array}  Compare the regression with the previous one.In particular,which model is likely to make the best prediction of weight? Which seems to fit the data better? Here is the same regression with all of the points at 70 removed.
Dependent variable is: Weight
30 total bears of which 10 are missing
R-squared = 97.8% R-squared (adjusted)= 97.3%
s = 2.96 with 20 - 4 = 16 degrees of freedom  Sum of  Mean  Source  Squares  DF  Square  F-ratio  Regression 7455.032485238.26 Residual 166.891610.43\begin{array} { l r r r r } & \text { Sum of } & & { \text { Mean } } \\\text { Source } & \text { Squares } & \text { DF } & \text { Square } & \text { F-ratio } \\\text { Regression } & 7455.0 & 3 & 2485 & 238.26 \\\text { Residual } & 166.89 & 16 & 10.43 &\end{array}  Variable  Coefficient  SE(Coeff)  t-ratio  P-value  Intercept 169.163.2352.37<0.0001 Chest 0.840.581.450.1590 Length 5.592.142.610.0148 Sex 1.191.980.600.5537\begin{array} { l r c r r } \text { Variable } & \text { Coefficient } & \text { SE(Coeff) } & \text { t-ratio } & \text { P-value } \\\text { Intercept } & - 169.16 & 3.23 & - 52.37 & < 0.0001 \\\text { Chest } & 0.84 & 0.58 & 1.45 & 0.1590 \\\text { Length } & 5.59 & 2.14 & 2.61 & 0.0148 \\\text { Sex } & - 1.19 & 1.98 & - 0.60 & 0.5537\end{array} Compare the regression with the previous one.In particular,which model is likely to make the best prediction of weight? Which seems to fit the data better?

Correct Answer:

verifed

Verified

Omitting the values changes the coeffici...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions