Solved

Compute sin(αβ)\sin ( \alpha - \beta ) And cos(αβ)\cos ( \alpha - \beta )

Question 13

Multiple Choice

Compute sin(αβ) \sin ( \alpha - \beta ) and cos(αβ) \cos ( \alpha - \beta ) using the data below. sinα=1213 where π2<α<π\sin \alpha = \frac { 12 } { 13 } \quad \text { where } \frac { \pi } { 2 } < \alpha < \pi cosβ=1517 where π<β<3π2\cos \beta = - \frac { 15 } { 17 } \quad \text { where } \pi < \beta < \frac { 3 \pi } { 2 }


A) sin(αβ) =140221\sin ( \alpha - \beta ) = \frac { 140 } { 221 } cos(αβ) =171221\cos ( \alpha - \beta ) = - \frac { 171 } { 221 }
B) sin(αβ) =220221\sin ( \alpha - \beta ) = - \frac { 220 } { 221 } cos(αβ) =21221\cos ( \alpha - \beta ) = - \frac { 21 } { 221 }
C) sin(αβ) =171221\sin ( \alpha - \beta ) = - \frac { 171 } { 221 } cos(αβ) =140221\cos ( \alpha - \beta ) = \frac { 140 } { 221 }
D) sin(αβ) =220221\sin ( \alpha - \beta ) = \frac { 220 } { 221 } cos(αβ) =21221\cos ( \alpha - \beta ) = - \frac { 21 } { 221 }
E) sin(αβ) =21221\sin ( \alpha - \beta ) = - \frac { 21 } { 221 } cos(αβ) =220221\cos ( \alpha - \beta ) = - \frac { 220 } { 221 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions