Solved

Compute cos(α+θ)\cos ( \alpha + \theta ) And cos(αθ)\cos ( \alpha - \theta )

Question 8

Multiple Choice

Compute cos(α+θ) \cos ( \alpha + \theta ) and cos(αθ) \cos ( \alpha - \theta ) using the data below. sinα=35 where π2<α<π\sin \alpha = \frac { 3 } { 5 } \quad \text { where } \frac { \pi } { 2 } < \alpha < \pi cosθ=513 where 2π<θ<3π2\cos \theta = \frac { 5 } { 13 } \quad \text { where } - 2 \pi < \theta < - \frac { 3 \pi } { 2 }


A) cos(α+θ) =21221\cos ( \alpha + \theta ) = \frac { 21 } { 221 } cos(αθ) =171221\cos ( \alpha - \theta ) = - \frac { 171 } { 221 }
B) cos(α+θ) =5665cos(αθ) =1665\cos ( \alpha + \theta ) = - \frac { 56 } { 65 } \cos ( \alpha - \theta ) = \frac { 16 } { 65 }
C) cos(α+θ) =1665\cos ( \alpha + \theta ) = \frac { 16 } { 65 } cos(αθ) =5665\cos ( \alpha - \theta ) = - \frac { 56 } { 65 }
D) cos(α+θ) =5665\cos ( \alpha + \theta ) = \frac { 56 } { 65 } cos(αθ) =1665\cos ( \alpha - \theta ) = \frac { 16 } { 65 }
E) cos(α+θ) =171221\cos ( \alpha + \theta ) = - \frac { 171 } { 221 } cos(αθ) =21221\cos ( \alpha - \theta ) = \frac { 21 } { 221 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions