Solved

Graph the Quadratic Function s=14t2t1s = - \frac { 1 } { 4 } t ^ { 2 } - t - 1

Question 23

Multiple Choice

Graph the quadratic function. Specify the vertex, axis of symmetry, maximum or minimum value, and intercepts. s=14t2t1s = - \frac { 1 } { 4 } t ^ { 2 } - t - 1


A) vertex: (- 2, 0) ; axis of symmetry: t = - 2; maximum value: 0; t-intercept: - 2; s-intercept: -1.  Graph the quadratic function. Specify the vertex, axis of symmetry, maximum or minimum value, and intercepts.  s = - \frac { 1 } { 4 } t ^ { 2 } - t - 1  A)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; maximum value: 0; t-intercept: - 2; s-intercept: -1.   B)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; minimum value: 0; t-intercept: - 2; s-intercept: 1.   C)  vertex: (2, 0) ; axis of symmetry: t = 2; maximum value: 0; t-intercept: 2; s-intercept: -1.   D)  vertex: (0,1) ; axis of symmetry: t = 0; maximum value: 1; t-intercept:  \pm 2  ; s-intercept: 1.   E)  vertex: (0, 2) ;axis of symmetry: t = 0; maximum value: 2; t-intercept:  \pm \sqrt { 8 }  ;s-intercept: 2.
B) vertex: (- 2, 0) ; axis of symmetry: t = - 2; minimum value: 0; t-intercept: - 2; s-intercept: 1.  Graph the quadratic function. Specify the vertex, axis of symmetry, maximum or minimum value, and intercepts.  s = - \frac { 1 } { 4 } t ^ { 2 } - t - 1  A)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; maximum value: 0; t-intercept: - 2; s-intercept: -1.   B)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; minimum value: 0; t-intercept: - 2; s-intercept: 1.   C)  vertex: (2, 0) ; axis of symmetry: t = 2; maximum value: 0; t-intercept: 2; s-intercept: -1.   D)  vertex: (0,1) ; axis of symmetry: t = 0; maximum value: 1; t-intercept:  \pm 2  ; s-intercept: 1.   E)  vertex: (0, 2) ;axis of symmetry: t = 0; maximum value: 2; t-intercept:  \pm \sqrt { 8 }  ;s-intercept: 2.
C) vertex: (2, 0) ; axis of symmetry: t = 2; maximum value: 0; t-intercept: 2; s-intercept: -1.  Graph the quadratic function. Specify the vertex, axis of symmetry, maximum or minimum value, and intercepts.  s = - \frac { 1 } { 4 } t ^ { 2 } - t - 1  A)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; maximum value: 0; t-intercept: - 2; s-intercept: -1.   B)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; minimum value: 0; t-intercept: - 2; s-intercept: 1.   C)  vertex: (2, 0) ; axis of symmetry: t = 2; maximum value: 0; t-intercept: 2; s-intercept: -1.   D)  vertex: (0,1) ; axis of symmetry: t = 0; maximum value: 1; t-intercept:  \pm 2  ; s-intercept: 1.   E)  vertex: (0, 2) ;axis of symmetry: t = 0; maximum value: 2; t-intercept:  \pm \sqrt { 8 }  ;s-intercept: 2.
D) vertex: (0,1) ; axis of symmetry: t = 0; maximum value: 1; t-intercept: ±2\pm 2 ; s-intercept: 1.  Graph the quadratic function. Specify the vertex, axis of symmetry, maximum or minimum value, and intercepts.  s = - \frac { 1 } { 4 } t ^ { 2 } - t - 1  A)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; maximum value: 0; t-intercept: - 2; s-intercept: -1.   B)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; minimum value: 0; t-intercept: - 2; s-intercept: 1.   C)  vertex: (2, 0) ; axis of symmetry: t = 2; maximum value: 0; t-intercept: 2; s-intercept: -1.   D)  vertex: (0,1) ; axis of symmetry: t = 0; maximum value: 1; t-intercept:  \pm 2  ; s-intercept: 1.   E)  vertex: (0, 2) ;axis of symmetry: t = 0; maximum value: 2; t-intercept:  \pm \sqrt { 8 }  ;s-intercept: 2.
E) vertex: (0, 2) ;axis of symmetry: t = 0; maximum value: 2; t-intercept: ±8\pm \sqrt { 8 } ;s-intercept: 2.  Graph the quadratic function. Specify the vertex, axis of symmetry, maximum or minimum value, and intercepts.  s = - \frac { 1 } { 4 } t ^ { 2 } - t - 1  A)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; maximum value: 0; t-intercept: - 2; s-intercept: -1.   B)  vertex: (- 2, 0) ; axis of symmetry: t = - 2; minimum value: 0; t-intercept: - 2; s-intercept: 1.   C)  vertex: (2, 0) ; axis of symmetry: t = 2; maximum value: 0; t-intercept: 2; s-intercept: -1.   D)  vertex: (0,1) ; axis of symmetry: t = 0; maximum value: 1; t-intercept:  \pm 2  ; s-intercept: 1.   E)  vertex: (0, 2) ;axis of symmetry: t = 0; maximum value: 2; t-intercept:  \pm \sqrt { 8 }  ;s-intercept: 2.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions