Solved

Graph the Hyperbola y24x2=4y ^ { 2 } - 4 x ^ { 2 } = 4

Question 15

Multiple Choice

Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. y24x2=4y ^ { 2 } - 4 x ^ { 2 } = 4


A)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4  A)    vertices:  ( 0 , \pm 2 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)     vertices: ( \pm 2,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)     vertices: ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 37 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . vertices: (0,±2) ( 0 , \pm 2 ) ;
Foci: (0,±5) ( 0 , \pm \sqrt { 5 } ) ;
Length of transverse axis: 4;
Length of conjugate axis: 2;
Eccentricity: 52\frac { \sqrt { 5 } } { 2 }
Asymptotes: y=±2xy = \pm 2 x .
B)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4  A)    vertices:  ( 0 , \pm 2 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)     vertices: ( \pm 2,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)     vertices: ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 37 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . vertices: (0,±1) ( 0 , \pm 1 ) ;
Foci: (0,±5) ( 0 , \pm \sqrt { 5 } ) ;
Length of transverse axis: 2;
Length of conjugate axis: 4;
Eccentricity: 5\sqrt { 5 } ;
Asymptotes: y=±12xy = \pm \frac { 1 } { 2 } x .
C)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4  A)    vertices:  ( 0 , \pm 2 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)     vertices: ( \pm 2,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)     vertices: ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 37 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . vertices: (±2,0) ( \pm 2,0 ) ;
Foci: (±5,0) ( \pm \sqrt { 5 } , 0 ) ;
Length of transverse axis: 4;
Length of conjugate axis: 2;
Eccentricity: 52\frac { \sqrt { 5 } } { 2 }
Asymptotes: y=±12xy = \pm \frac { 1 } { 2 } x .
D)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4  A)    vertices:  ( 0 , \pm 2 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)     vertices: ( \pm 2,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)     vertices: ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 37 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . vertices: (±1,0) ( \pm 1,0 ) ;
Foci: (±37,0) ( \pm \sqrt { 37 } , 0 ) ;
Length of transverse axis: 2;
Length of conjugate axis: 12;
Eccentricity: 37\sqrt { 37 } ;
Asymptotes: y=±37xy = \pm 37 x .
E)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  y ^ { 2 } - 4 x ^ { 2 } = 4  A)    vertices:  ( 0 , \pm 2 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm 2 x  . B)    vertices:  ( 0 , \pm 1 )   ; Foci:  ( 0 , \pm \sqrt { 5 } )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }  ; Asymptotes:  y = \pm \frac { 1 } { 2 } x  . C)     vertices: ( \pm 2,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 4; Length of conjugate axis: 2; Eccentricity:  \frac { \sqrt { 5 } } { 2 }  Asymptotes:  y = \pm \frac { 1 } { 2 } x  . D)     vertices: ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 37 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 12; Eccentricity:  \sqrt { 37 }  ; Asymptotes:  y = \pm 37 x  . E)    vertices:  ( \pm 1,0 )   ; Foci:  ( \pm \sqrt { 5 } , 0 )   ; Length of transverse axis: 2; Length of conjugate axis: 4; Eccentricity:  \sqrt { 5 }   Asymptotes:  y = \pm 2 x  . vertices: (±1,0) ( \pm 1,0 ) ;
Foci: (±5,0) ( \pm \sqrt { 5 } , 0 ) ;
Length of transverse axis: 2;
Length of conjugate axis: 4;
Eccentricity: 5\sqrt { 5 } Asymptotes: y=±2xy = \pm 2 x .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions