Solved

Find sinθ\sin \theta And cosθ\cos \theta , Where θ\theta Is the (Acute) Angle of Rotation That Eliminates The

Question 16

Multiple Choice

Find sinθ\sin \theta and cosθ\cos \theta , where θ\theta is the (acute) angle of rotation that eliminates the xyx ^ { \prime } y ^ { \prime } -term. Note: You are not asked to graph the equation. 175xy600y21=0175 x y - 600 y ^ { 2 } - 1 = 0


A) sinθ=45\sin \theta = \frac { 4 } { 5 } cosθ=35\cos \theta = \frac { 3 } { 5 }
B) sinθ=725\sin \theta = \frac { 7 \sqrt { 2 } } { 5 } cosθ=25\cos \theta = \frac { \sqrt { 2 } } { 5 }
C) sinθ=35\sin \theta = \frac { 3 } { 5 } cosθ=45\cos \theta = \frac { 4 } { 5 }
D) sinθ=210\sin \theta = \frac { \sqrt { 2 } } { 10 } cosθ=7210\cos \theta = \frac { 7 \sqrt { 2 } } { 10 }
E) sinθ=22\sin \theta = \frac { \sqrt { 2 } } { 2 } cosθ=22\cos \theta = \frac { \sqrt { 2 } } { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions