Solved

Make the Trigonometric Substitution x=atanθ for π2<θ<π2x = a \tan \theta \text { for } \frac { - \pi } { 2 } < \theta < \frac { \pi } { 2 }

Question 21

Multiple Choice

Make the trigonometric substitution x=atanθ for π2<θ<π2x = a \tan \theta \text { for } \frac { - \pi } { 2 } < \theta < \frac { \pi } { 2 } and a > 0. Use fundamental identities to simplify the resulting expression. 1x2+a2\frac { 1 } { x ^ { 2 } + a ^ { 2 } }


A) a2sec2θcscθa ^ { 2 } \sec ^ { 2 } \theta \csc \theta
B) 1acos2θ\frac { 1 } { a } \cos ^ { 2 } \theta
C) 1acosθ\frac { 1 } { a } \cos \theta
D) 1a2cos2θ\frac { 1 } { a ^ { 2 } } \cos ^ { 2 } \theta
E) asecθa \sec \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions