Solved

Let P ( T ) Be the Point on the Unit

Question 23

Multiple Choice

Let P ( t ) be the point on the unit circle U that corresponds to t. If P ( t ) has the coordinates (2129,2029) \left( \frac { 21 } { 29 } , \frac { 20 } { 29 } \right) , find P(t+π) P ( t + \pi ) , P(tπ) P ( t - \pi ) , P(t) P ( - t ) , P(tπ) P ( - t - \pi ) .


A) P(t+π) =(2129,2029) ,P(πt) =(2129,2029) P ( t + \pi ) = \left( - \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( \pi - t ) = \left( - \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) P(t) =(2129,2029) ,P(tπ) =(2129,2029) P ( - t ) = \left( \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( - t - \pi ) = \left( \frac { 21 } { 29 } , \frac { 20 } { 29 } \right)
B) P(t+π) =(2129,2029) ,P(πt) =(2129,2029) P ( t + \pi ) = \left( \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( \pi - t ) = \left( - \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) P(t) =(2129,2029) ,P(tπ) =(2129,2029) P ( - t ) = \left( \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( - t - \pi ) = \left( - \frac { 21 } { 29 } , \frac { 20 } { 29 } \right)
C) P(t+π) =(2129,2029) ,P(πt) =(2129,2029) P ( t + \pi ) = \left( - \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( \pi - t ) = \left( - \frac { 21 } { 29 } , \frac { 20 } { 29 } \right) P(t) =(2129,2029) ,P(tπ) =(2129,2029) P ( - t ) = \left( \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( - t - \pi ) = \left( - \frac { 21 } { 29 } , \frac { 20 } { 29 } \right)
D) P(t+π) =(2129,2029) ,P(πt) =(2129,2029) P ( t + \pi ) = \left( - \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( \pi - t ) = \left( \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) P(t) =(2129,2029) ,P(tπ) =(2129,2029) P ( - t ) = \left( \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( - t - \pi ) = \left( \frac { 21 } { 29 } , \frac { 20 } { 29 } \right)
E) P(t+π) =(2129,2029) ,P(πt) =(2129,2029) P ( t + \pi ) = \left( \frac { 21 } { 29 } , \frac { 20 } { 29 } \right) , P ( \pi - t ) = \left( - \frac { 21 } { 29 } , \frac { 20 } { 29 } \right) P(t) =(2129,2029) ,P(tπ) =(2129,2029) P ( - t ) = \left( \frac { 21 } { 29 } , - \frac { 20 } { 29 } \right) , P ( - t - \pi ) = \left( - \frac { 21 } { 29 } , \frac { 20 } { 29 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions