Solved

Use Fundamental Identities to Find the Exact Values of the Trigonometric

Question 25

Multiple Choice

Use fundamental identities to find the exact values of the trigonometric functions for the given conditions. cscθ=7 and cotθ<0\csc \theta = 7 \text { and } \cot \theta < 0


A) sinθ=487,cosθ=17,tanθ=148cotθ=48,secθ=748,cscθ=7\begin{array} { l } \sin \theta = - \frac { \sqrt { 48 } } { 7 } , \quad \cos \theta = \frac { 1 } { 7 } , \quad \tan \theta = - \frac { 1 } { \sqrt { 48 } } \\\cot \theta = - \sqrt { 48 } , \quad \sec \theta = - \frac { 7 } { \sqrt { 48 } } , \quad \csc \theta = 7\end{array}
B) sinθ=17,cosθ=487,tanθ=148cotθ=48,secθ=748,cscθ=7\begin{array} { l } \sin \theta = - \frac { 1 } { 7 } , \quad \cos \theta = \frac { \sqrt { 48 } } { 7 } , \quad \tan \theta = \frac { 1 } { \sqrt { 48 } } \\\cot \theta = \sqrt { 48 } , \quad \sec \theta = \frac { 7 } { \sqrt { 48 } } , \quad \csc \theta = - 7\end{array}
C) sinθ=148,cosθ=4848,tanθ=1cotθ=48,secθ=748,cscθ=48\begin{array} { c c } \sin \theta = \frac { 1 } { 48 } , \quad \cos \theta = - \frac { \sqrt { 48 } } { 48 } , \quad \tan \theta = - 1 \\\cot \theta = - \sqrt { 48 } , \quad \sec \theta = - \frac { 7 } { \sqrt { 48 } } , \quad \csc \theta = 48\end{array}
D) sinθ=17,cosθ=487,tanθ=148cotθ=48,secθ=748,cscθ=7\begin{array} { c } \sin \theta = \frac { 1 } { 7 } , \quad \cos \theta = - \frac { \sqrt { 48 } } { 7 } , \quad \tan \theta = - \frac { 1 } { \sqrt { 48 } } \\\cot \theta = - \sqrt { 48 } , \quad \sec \theta = - \frac { 7 } { \sqrt { 48 } } , \quad \csc \theta = 7\end{array}
E) sinθ=148,cosθ=487,tanθ=148cotθ=48,secθ=4848,cscθ=7\begin{array} { l } \sin \theta = - \frac { 1 } { 48 } , \quad \cos \theta = \frac { \sqrt { 48 } } { 7 } , \quad \tan \theta = - \frac { 1 } { \sqrt { 48 } } \\\cot \theta = - \sqrt { 48 } , \quad \sec \theta = - \frac { 48 } { \sqrt { 48 } } , \quad \csc \theta = - 7\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions