Solved

The Graph of an Equation of a Sine Wave Is  amplitude =3, period =π, phaseshift =π4\text { amplitude } = 3 , \quad \text { period } = \pi , \quad \text { phaseshift } = - \frac { \pi } { 4 }

Question 4

Multiple Choice

The graph of an equation of a sine wave is shown in the figure. Find the amplitude, period, and phase shift.  The graph of an equation of a sine wave is shown in the figure. Find the amplitude, period, and phase shift.   A)   \text { amplitude } = 3 , \quad \text { period } = \pi , \quad \text { phaseshift } = - \frac { \pi } { 4 }  ,  y = 3 \sin \left( 2 x + \frac { \pi } { 2 } \right)   B)   \text { amplitude } = 6 , \quad \text { period } = \pi , \quad \text { phaseshift } = \frac { \pi } { 8 }  ,  y = 6 \sin \left( 2 x + \frac { \pi } { 2 } \right)   C)   \text { amplitude } = 4 , \quad \text { period } = \pi , \quad \text { phaseshift } = - \frac { \pi } { 6 }  ,  y = 4 \sin \left( 2 x + \frac { \pi } { 2 } \right)   D)   \text { amplitude } = 3 , \quad \text { period } = \pi , \quad \text { phaseshift } = - \frac { \pi } { 4 }  ,  y = 3 \cos \left( 2 x + \frac { \pi } { 2 } \right)   E)   \text { amplitude } = 6 , \quad \text { period } = \pi , \quad \text { phaseshift } = \frac { \pi } { 4 }  ,  y = 6 \cos \left( 2 x + \frac { \pi } { 2 } \right)


A)  amplitude =3, period =π, phaseshift =π4\text { amplitude } = 3 , \quad \text { period } = \pi , \quad \text { phaseshift } = - \frac { \pi } { 4 } , y=3sin(2x+π2) y = 3 \sin \left( 2 x + \frac { \pi } { 2 } \right)
B)  amplitude =6, period =π, phaseshift =π8\text { amplitude } = 6 , \quad \text { period } = \pi , \quad \text { phaseshift } = \frac { \pi } { 8 } , y=6sin(2x+π2) y = 6 \sin \left( 2 x + \frac { \pi } { 2 } \right)
C)  amplitude =4, period =π, phaseshift =π6\text { amplitude } = 4 , \quad \text { period } = \pi , \quad \text { phaseshift } = - \frac { \pi } { 6 } , y=4sin(2x+π2) y = 4 \sin \left( 2 x + \frac { \pi } { 2 } \right)
D)  amplitude =3, period =π, phaseshift =π4\text { amplitude } = 3 , \quad \text { period } = \pi , \quad \text { phaseshift } = - \frac { \pi } { 4 } , y=3cos(2x+π2) y = 3 \cos \left( 2 x + \frac { \pi } { 2 } \right)
E)  amplitude =6, period =π, phaseshift =π4\text { amplitude } = 6 , \quad \text { period } = \pi , \quad \text { phaseshift } = \frac { \pi } { 4 } , y=6cos(2x+π2) y = 6 \cos \left( 2 x + \frac { \pi } { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions