Solved

Use a Double Integral to Find the Area of R y0y1xy3xey1dxdy=e76\int _ { y - 0 } ^ { y - 1 } \int _ { x - \frac { y } { 3 } } ^ { x - e ^ { y } } 1 d x d y = e - \frac { 7 } { 6 }

Question 7

Multiple Choice

Use a double integral to find the area of R. R is the region bounded by y = 3x,y = ln x,y = 0,and y = 1.


A) y0y1xy3xey1dxdy=e76\int _ { y - 0 } ^ { y - 1 } \int _ { x - \frac { y } { 3 } } ^ { x - e ^ { y } } 1 d x d y = e - \frac { 7 } { 6 }
B) y0y1x0xey1dxdy=e1\int _ { y - 0 } ^ { y - 1 } \int _ { x - 0 } ^ { x - e ^ { y } } 1 d x d y = e - 1
C) x=0xeylnxy11dydx=e\int _ { x = 0 } ^ { x - e } \int _ { y - \ln x } ^ { y - 1 } 1 d y d x = e
D) x=0x2ymxy3x1dydx=3e22\int _ { x = 0 } ^ { x - 2 } \int _ { y - \operatorname { m } x } ^ { y - 3 x } 1 d y d x = \frac { 3 e ^ { 2 } } { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions